In this paper, the linear matrix differantial equations which is a special case of matrix differantial equations has
been formulated by the consepts of of the matrix differantial equations and Kronecker products and investigated
by the Kronecker products. The formulation of the matrix differantial equation obtained by use of the linear
matrix equations and Kronecker products have been applied to the matrix differantial equations and some
important results have been found. It is shown that in solutions of the equation and its reduced case have
emerged the importance of generalized inverse matrix and matrix functions.
Bu çalışmada, matris diferansiyel denklemlerinin özel bir hali olan doğrusal matris diferansiyel denklemleri
Kronecker çarpım ve matris diferansiyel denklemleri kavramalarıyla formüle edilmiş ve Kronecker çarpımlarla
incelenmiştir. Kronecker çarpım ve doğrusal matris denklemler kullanılarak elde edilen doğrusal matris
diferansiyel denklem formulasyonu matris diferansiyel denklemlere uygulanmış ve bazı önemli sonuçlar
bulunmuştur. Denklemin ve onun indirgenmiş durumu genelleştirilmiş ters matris ve matris fonksiyonunun
önemini ortay çıkarmıştır.
Other ID | JA84EZ37HA |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | March 1, 2015 |
Submission Date | March 1, 2015 |
Published in Issue | Year 2015 Volume: 10 Issue: 1 |