Research Article
BibTex RIS Cite
Year 2021, Volume: 16 Issue: 1, 155 - 162, 15.03.2021

Abstract

References

  • [1]. Al Ghayab, H.R., Li, Y., Siuly, S., Abdulla, S. (2019). A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Journal of Neuroscience Methods, 312, pp.43–52.
  • [2]. Kumar, S.P., Sriraam, N., Benakop, P.G. (2008). Automated Detection of Epileptic Seizures Using Wavelet Entropy Feature with Recurrent Neural Network Classifier. TENCON 2008 - 2008 IEEE Region 10 Conference, pp.1-5
  • [3]. Tzimourta, K.D., Tzallas, A.T., Giannakeas, N., Astrakas, L.G., Tsalikakis, D.G., Angelidis, P., Tsipouras, M.G. (2019). A robust methodology for classification of epileptic seizures in EEG signals. Health and Technology, 9, pp.135–142.
  • [4]. Raghu, S., Sriraam, N., Temel, Y., Rao, S.V., Hegde, A.S., Kubben, P.L. (2019). Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier. Computers in Biology and Medicine, 110, pp.127–143.
  • [5]. Gu, X., Zhang, C., Ni, T. (2020). A Hierarchical Discriminative Sparse Representation Classifier for EEG Signal Detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp.1-11.
  • [6]. Ahammed, K., Ahmed, M.U. (2020). Epileptic Seizure Detection Based on Complexity Feature of EEG, Journal of Biomedical Analytics, 3(1), pp. 1-11.
  • [7].Li, Y., Cui, WG, Huang, H., Guo, YZ., Li, K., Tan T. (2019). Epileptic seizure detection in EEG signals using sparse multiscale radial basis function networks and the Fisher vector approach. Knowledge-Based Systems, 164, pp.96–106.
  • [8]. Tuncer, T., Dogan, S., Ertam, F., Subasi, A. (2020). A novel ensemble local graph structure based feature extractionnetwork for EEG signal analysis. Biomedical Signal Processing and Control, 61, pp. 1-15.
  • [9]. Slimen, I.B., Seddik, H. (2020). Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches. 5th International Conference on Advanced Technologies For Signal and Image Processing, pp.1-4.
  • [10]. Pachori, R.B., Patidar, S. (2014). Epileptic seizure classification in EEG signals usingsecond-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113, pp.494–502.
  • [11]. Juarez-Guerra, E., Alarcon-Aquino, V., Gomez-Gil, P. (2015). Epilepsy Seizure Detection in EEG Signals Using Wavelet Transforms and Neural Networks. New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering, 312, pp.261-269
  • [12]. Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D. (2013). Featur eextraction and recognition of ictal EEG using EMD and SVM, Computers in Biology and Medicine, 43, pp.807–816
  • [13]. Ramanna, S., Tirunagari, S., Windridge, D. (2020). Epileptic seizure detection using constrained singular spectrum analysis and 1D-local binary patterns. Health and Technology, pp.1-11
  • [14]. Chandaka, S., Chatterjee, A., Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36, pp.1329–1336.
  • [15]. Shoeibi, A., Ghassemi, N., Alizadehsani, R., Rouhani, M., Hosseini-Nejad, H., Khosravi, A., Panahiazar, M., Nahavandi, S. (2020). A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals. Expert Systems With Applications, pp.1-17
  • [16]. Ren, W., Han, M., Wang, J., Wang, D., Li, T. (2016). Efficient Feature Extraction Framework for EEG Signals Classification. 7th International Conference on Intelligent Control and Information Processing, pp.167-172.
  • [17]. Guha, A., Ghosh, S., Roy, A., Chatterjee, S. (2020). Epileptic Seizure Recognition Using Deep Neural Network. Advances in Intelligent Systems and Computing, 937, pp.21-28.
  • [18]. Ibrahim, S., Djemal, R., Alsuwailem,A. (2018). Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybernetics and Biomedical Engineering, 38, pp.16-26.
  • [19]. Liu, Y., Lin, Y., Jia, Z., Ma, Y., Wang, J. (2020). Representation based on ordinal patterns for seizure detection in EEG signals. Computers in Biology and Medicine, 126, pp.1-13.
  • [20]. Ren, W., Han, M. (2019). Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine. Neural Processing Letters, 50, pp.1281–1301.
  • [21]. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K. (2017). Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals. IEEE Journal Of Biomedical And Health Informatics, 21(4), pp.888-896.
  • [22]. Zhang, T., Chen, W., Li, M. (2018). Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybernetics and Biomedical Engineering, 38, pp.519 – 534.
  • [23]. İbrahim, S., AlSharabi, K., Djemal, R., Alsuwailem A. (2016). An Adaptive Learning Approach for EEG-Based Computer Aided Diagnosis of Epilepsy, International Seminar on Intelligent Techonology and Its Application, pp.55-60.
  • [24]. Zazzaro, G., Cuomo, S., Martone, A., Montaquila, R.V., Toraldo, G., Pavone L. (2019). EEG signal analysis for epileptic seizures detection by applying Data Mining techniques. Internet of Things, pp.1-14
  • [25]. Mahmoodian, N., Boese, A., Friebe, M., HDWTadnia, J. (2019). Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure: European Journal of Epilepsy, 66, pp.4–11.
  • [26]. Das, P., Manikandan, M.S., Ramkumar, B. (2018). Detection of Epileptic Seizure Event in EEG Signals Using Variational Mode Decomposition and Mode Spectral Entropy. IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp.42-47
  • [27]. Raghu, S., Sriraam, N., Hegde, A.S., Kubben, P.L. (2019). A novel approach for classification of epileptic seizures using matrix determinant. Expert Systems With Applications, 127, pp. 323-341
  • [28]. Jana, G.C., Sharma, R., Agrawal, A. (2020). A 1D-CNN-Spectrogram Based Approach for Seizure Detection from EEG Signal. Procedia Computer Science, 167, pp.403–412
  • [29]. Li, Y., Liu, Y., Cui, WG., Guo, YZ., Huang, H., Hu, ZY. (2020). Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 28(4), pp.782-794.
  • [30]. Thara, D.K., Premasudha, B.g., Nayak, R.S., Murthy, T.V., Prabhu, G.A., Hanoon, N. (2020). Electroencephalogram for epileptic seizure detection using stacked bidirectional LSTM_GAP neural network. Evolutionary Intelligence, pp.1-11
  • [31]. Jiang, Y., Chen, W., Li, M. (2020). Symplectic geometry decomposition-based features for automatic epileptic seizure detection, Computers in Biology and Medicine, 116, pp.1-12.
  • [32]. Mohammadpoory, Z., Nasrolahzadeh, M., HDWTadnia, J. (2017). Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy. Seizure, 50, pp.202–208.
  • [33]. Mahmoodian, N., Boese, A., Friebe, M., HDWTadnia, J. (2019). Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure: European Journal of Epilepsy, 66, pp.4–11.
  • [34]. Yavuz, E., Kasapbaşı, M.C., Eyüpoğlu, C., Yazıcı, R.(2018). An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybernetics and Biomedical Engineering, 38, pp.201-216.
  • [35]. Sharma, M., Bhurane, A.A., Acharya, U.R. (2018). MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection. Knowledge-Based Systems, 160, pp.265–277.
  • [36]. Akyol, K. (2020). Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Expert Systems With Applications, 148, pp.1-9.
  • [37]. Yuan, Q., Zhou, W., Zhang, L., Zhang, F., Xu, F., Leng,Y., Wei, D., Chen, M. (2017). Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure, 50, pp.99–108.
  • [38]. Zhou, X., Ling, B.W.K., Li, C., Zhao, K. (2020). Epileptic seizure detection via logarithmic normalized functionalvalues of singular values. Biomedical Signal Processing and Control, 62, pp.1-12.
  • [39]. Yuan, Y., Xun, G., Jia, K., Zhang, A. (2017). A Multi-view Deep Learning Method for Epileptic Seizure Detection using Short-time Fourier Transform. Session 8: Automated Diagnosis and Prediction I ACM-BCB’17, pp.213-222.
  • [40]. Hossain, M.S., Amın, S.U., Alsulaıman, M., Muhammad, G.(2019). Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Trans. Multimedia Comput. Commun. Appl., 15(10), pp. 1-10.
  • [41]. Liu, X., Jiang, A., Xu, N. (2017). Automated Epileptic Seizure Detection in EEGs Using Increment Entropy, 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp.1-4.
  • [42]. Harender, Sharma, R.K. (2017). DWT based Epileptic Seizure Detection from EEG signal using k-NN classifier. International Conference on Trends in Electronics and Informatics, pp.762-765.
  • [43]. Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H., Xiang, J. (2018). Epileptic Seizure Detection Based on EEG Signals and CNN. Frontiers Neuroinform. 12(95), pp.1-33.
  • [44]. Li, Y., Liu, Y., Cui, WG., Guo, YZ., Huang, H., Hu, ZY. (2020). Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 28(4), pp.782-794.
  • [45]. Lu, D., Triesch, J. (2019) Residual Deep Convolutional Neural Network for EEG Signal Classification in Epilepsyi eprint arXiv:1903.08100, pp.1-11.
  • [46]. Orhan, U., Hekim, M., Ozer, M. (2011). Eeg signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl., 38(10), pp.13475–13481.
  • [47]. Hassan, A.R., Subasi, A., Zhang, Y. (2020). Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowledge-Based Systems, pp.1-12.
  • [48]. Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S. (2012). Application of nonlinear and wavelet based features for the automated identification of epileptic eeg signals. Int. J. Neural Syst. 22(02), pp.1-14.
  • [49]. Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S. (2014). 1d-local binary pattern based feature extraction for classification of epileptic eeg signals, Appl. Math. Comput. 243, pp.209–219.
  • [50]. Siuly, S., Li, Y., Wen, P. (2011). Clustering technique-based least square support vector machine for eeg signal classification. Comput. Methods Programs Biomed., 104(3), pp.358–372.

One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method

Year 2021, Volume: 16 Issue: 1, 155 - 162, 15.03.2021

Abstract

The diagnosis of epilepsy from the EEG signals is determined by the visual/manual evaluation performed by the neurologist. This evaluation process is laborious and evaluation results vary according to the experience level of neurologists. Therefore, automated systems that will be created using advanced signal processing techniques are important for diagnosis. In this study, a new feature extraction method is proposed using multiple kernel based one-dimensional center symmetric local binary pattern (1D-CSLBP) to identify epileptic seizures. To strengthen this method, levels have been created and multi-level feature extraction has been carried out. Discrete wavelet transform (DWT) was used to generate the levels and feature extraction was performed using the low pass filter coefficient (L bands) obtained at each level. Neighborhood component analysis (NCA) was used to select the most distinctive features. The obtained features are classified using the nearest neighbors (kNN) algorithm. A high performance method was obtained by using multiple kernel NCA and NCA. The 1D-CSLBP and NCA-based method has reached 100.0% accuracy in A-E, A-D-E, D-E, C-E situations.

References

  • [1]. Al Ghayab, H.R., Li, Y., Siuly, S., Abdulla, S. (2019). A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. Journal of Neuroscience Methods, 312, pp.43–52.
  • [2]. Kumar, S.P., Sriraam, N., Benakop, P.G. (2008). Automated Detection of Epileptic Seizures Using Wavelet Entropy Feature with Recurrent Neural Network Classifier. TENCON 2008 - 2008 IEEE Region 10 Conference, pp.1-5
  • [3]. Tzimourta, K.D., Tzallas, A.T., Giannakeas, N., Astrakas, L.G., Tsalikakis, D.G., Angelidis, P., Tsipouras, M.G. (2019). A robust methodology for classification of epileptic seizures in EEG signals. Health and Technology, 9, pp.135–142.
  • [4]. Raghu, S., Sriraam, N., Temel, Y., Rao, S.V., Hegde, A.S., Kubben, P.L. (2019). Performance evaluation of DWT based sigmoid entropy in time and frequency domains for automated detection of epileptic seizures using SVM classifier. Computers in Biology and Medicine, 110, pp.127–143.
  • [5]. Gu, X., Zhang, C., Ni, T. (2020). A Hierarchical Discriminative Sparse Representation Classifier for EEG Signal Detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp.1-11.
  • [6]. Ahammed, K., Ahmed, M.U. (2020). Epileptic Seizure Detection Based on Complexity Feature of EEG, Journal of Biomedical Analytics, 3(1), pp. 1-11.
  • [7].Li, Y., Cui, WG, Huang, H., Guo, YZ., Li, K., Tan T. (2019). Epileptic seizure detection in EEG signals using sparse multiscale radial basis function networks and the Fisher vector approach. Knowledge-Based Systems, 164, pp.96–106.
  • [8]. Tuncer, T., Dogan, S., Ertam, F., Subasi, A. (2020). A novel ensemble local graph structure based feature extractionnetwork for EEG signal analysis. Biomedical Signal Processing and Control, 61, pp. 1-15.
  • [9]. Slimen, I.B., Seddik, H. (2020). Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches. 5th International Conference on Advanced Technologies For Signal and Image Processing, pp.1-4.
  • [10]. Pachori, R.B., Patidar, S. (2014). Epileptic seizure classification in EEG signals usingsecond-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113, pp.494–502.
  • [11]. Juarez-Guerra, E., Alarcon-Aquino, V., Gomez-Gil, P. (2015). Epilepsy Seizure Detection in EEG Signals Using Wavelet Transforms and Neural Networks. New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering, 312, pp.261-269
  • [12]. Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D. (2013). Featur eextraction and recognition of ictal EEG using EMD and SVM, Computers in Biology and Medicine, 43, pp.807–816
  • [13]. Ramanna, S., Tirunagari, S., Windridge, D. (2020). Epileptic seizure detection using constrained singular spectrum analysis and 1D-local binary patterns. Health and Technology, pp.1-11
  • [14]. Chandaka, S., Chatterjee, A., Munshi, S. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications, 36, pp.1329–1336.
  • [15]. Shoeibi, A., Ghassemi, N., Alizadehsani, R., Rouhani, M., Hosseini-Nejad, H., Khosravi, A., Panahiazar, M., Nahavandi, S. (2020). A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals. Expert Systems With Applications, pp.1-17
  • [16]. Ren, W., Han, M., Wang, J., Wang, D., Li, T. (2016). Efficient Feature Extraction Framework for EEG Signals Classification. 7th International Conference on Intelligent Control and Information Processing, pp.167-172.
  • [17]. Guha, A., Ghosh, S., Roy, A., Chatterjee, S. (2020). Epileptic Seizure Recognition Using Deep Neural Network. Advances in Intelligent Systems and Computing, 937, pp.21-28.
  • [18]. Ibrahim, S., Djemal, R., Alsuwailem,A. (2018). Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybernetics and Biomedical Engineering, 38, pp.16-26.
  • [19]. Liu, Y., Lin, Y., Jia, Z., Ma, Y., Wang, J. (2020). Representation based on ordinal patterns for seizure detection in EEG signals. Computers in Biology and Medicine, 126, pp.1-13.
  • [20]. Ren, W., Han, M. (2019). Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine. Neural Processing Letters, 50, pp.1281–1301.
  • [21]. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K. (2017). Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals. IEEE Journal Of Biomedical And Health Informatics, 21(4), pp.888-896.
  • [22]. Zhang, T., Chen, W., Li, M. (2018). Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybernetics and Biomedical Engineering, 38, pp.519 – 534.
  • [23]. İbrahim, S., AlSharabi, K., Djemal, R., Alsuwailem A. (2016). An Adaptive Learning Approach for EEG-Based Computer Aided Diagnosis of Epilepsy, International Seminar on Intelligent Techonology and Its Application, pp.55-60.
  • [24]. Zazzaro, G., Cuomo, S., Martone, A., Montaquila, R.V., Toraldo, G., Pavone L. (2019). EEG signal analysis for epileptic seizures detection by applying Data Mining techniques. Internet of Things, pp.1-14
  • [25]. Mahmoodian, N., Boese, A., Friebe, M., HDWTadnia, J. (2019). Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure: European Journal of Epilepsy, 66, pp.4–11.
  • [26]. Das, P., Manikandan, M.S., Ramkumar, B. (2018). Detection of Epileptic Seizure Event in EEG Signals Using Variational Mode Decomposition and Mode Spectral Entropy. IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp.42-47
  • [27]. Raghu, S., Sriraam, N., Hegde, A.S., Kubben, P.L. (2019). A novel approach for classification of epileptic seizures using matrix determinant. Expert Systems With Applications, 127, pp. 323-341
  • [28]. Jana, G.C., Sharma, R., Agrawal, A. (2020). A 1D-CNN-Spectrogram Based Approach for Seizure Detection from EEG Signal. Procedia Computer Science, 167, pp.403–412
  • [29]. Li, Y., Liu, Y., Cui, WG., Guo, YZ., Huang, H., Hu, ZY. (2020). Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 28(4), pp.782-794.
  • [30]. Thara, D.K., Premasudha, B.g., Nayak, R.S., Murthy, T.V., Prabhu, G.A., Hanoon, N. (2020). Electroencephalogram for epileptic seizure detection using stacked bidirectional LSTM_GAP neural network. Evolutionary Intelligence, pp.1-11
  • [31]. Jiang, Y., Chen, W., Li, M. (2020). Symplectic geometry decomposition-based features for automatic epileptic seizure detection, Computers in Biology and Medicine, 116, pp.1-12.
  • [32]. Mohammadpoory, Z., Nasrolahzadeh, M., HDWTadnia, J. (2017). Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy. Seizure, 50, pp.202–208.
  • [33]. Mahmoodian, N., Boese, A., Friebe, M., HDWTadnia, J. (2019). Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure: European Journal of Epilepsy, 66, pp.4–11.
  • [34]. Yavuz, E., Kasapbaşı, M.C., Eyüpoğlu, C., Yazıcı, R.(2018). An epileptic seizure detection system based on cepstral analysis and generalized regression neural network. Biocybernetics and Biomedical Engineering, 38, pp.201-216.
  • [35]. Sharma, M., Bhurane, A.A., Acharya, U.R. (2018). MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection. Knowledge-Based Systems, 160, pp.265–277.
  • [36]. Akyol, K. (2020). Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection. Expert Systems With Applications, 148, pp.1-9.
  • [37]. Yuan, Q., Zhou, W., Zhang, L., Zhang, F., Xu, F., Leng,Y., Wei, D., Chen, M. (2017). Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure, 50, pp.99–108.
  • [38]. Zhou, X., Ling, B.W.K., Li, C., Zhao, K. (2020). Epileptic seizure detection via logarithmic normalized functionalvalues of singular values. Biomedical Signal Processing and Control, 62, pp.1-12.
  • [39]. Yuan, Y., Xun, G., Jia, K., Zhang, A. (2017). A Multi-view Deep Learning Method for Epileptic Seizure Detection using Short-time Fourier Transform. Session 8: Automated Diagnosis and Prediction I ACM-BCB’17, pp.213-222.
  • [40]. Hossain, M.S., Amın, S.U., Alsulaıman, M., Muhammad, G.(2019). Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Trans. Multimedia Comput. Commun. Appl., 15(10), pp. 1-10.
  • [41]. Liu, X., Jiang, A., Xu, N. (2017). Automated Epileptic Seizure Detection in EEGs Using Increment Entropy, 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp.1-4.
  • [42]. Harender, Sharma, R.K. (2017). DWT based Epileptic Seizure Detection from EEG signal using k-NN classifier. International Conference on Trends in Electronics and Informatics, pp.762-765.
  • [43]. Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H., Xiang, J. (2018). Epileptic Seizure Detection Based on EEG Signals and CNN. Frontiers Neuroinform. 12(95), pp.1-33.
  • [44]. Li, Y., Liu, Y., Cui, WG., Guo, YZ., Huang, H., Hu, ZY. (2020). Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 28(4), pp.782-794.
  • [45]. Lu, D., Triesch, J. (2019) Residual Deep Convolutional Neural Network for EEG Signal Classification in Epilepsyi eprint arXiv:1903.08100, pp.1-11.
  • [46]. Orhan, U., Hekim, M., Ozer, M. (2011). Eeg signals classification using the k-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl., 38(10), pp.13475–13481.
  • [47]. Hassan, A.R., Subasi, A., Zhang, Y. (2020). Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowledge-Based Systems, pp.1-12.
  • [48]. Acharya, U.R., Sree, S.V., Ang, P.C.A., Yanti, R., Suri, J.S. (2012). Application of nonlinear and wavelet based features for the automated identification of epileptic eeg signals. Int. J. Neural Syst. 22(02), pp.1-14.
  • [49]. Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S. (2014). 1d-local binary pattern based feature extraction for classification of epileptic eeg signals, Appl. Math. Comput. 243, pp.209–219.
  • [50]. Siuly, S., Li, Y., Wen, P. (2011). Clustering technique-based least square support vector machine for eeg signal classification. Comput. Methods Programs Biomed., 104(3), pp.358–372.
There are 50 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Serkan Metin 0000-0003-1765-7474

Publication Date March 15, 2021
Submission Date February 10, 2021
Published in Issue Year 2021 Volume: 16 Issue: 1

Cite

APA Metin, S. (2021). One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method. Turkish Journal of Science and Technology, 16(1), 155-162.
AMA Metin S. One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method. TJST. March 2021;16(1):155-162.
Chicago Metin, Serkan. “One-Dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method”. Turkish Journal of Science and Technology 16, no. 1 (March 2021): 155-62.
EndNote Metin S (March 1, 2021) One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method. Turkish Journal of Science and Technology 16 1 155–162.
IEEE S. Metin, “One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method”, TJST, vol. 16, no. 1, pp. 155–162, 2021.
ISNAD Metin, Serkan. “One-Dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method”. Turkish Journal of Science and Technology 16/1 (March 2021), 155-162.
JAMA Metin S. One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method. TJST. 2021;16:155–162.
MLA Metin, Serkan. “One-Dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method”. Turkish Journal of Science and Technology, vol. 16, no. 1, 2021, pp. 155-62.
Vancouver Metin S. One-dimensional Center Symmetric Local Binary Pattern Based Epilepsy Detection Method. TJST. 2021;16(1):155-62.