Research Article
BibTex RIS Cite

ChatGPT-3 Sorguları ile Sosyal Bilimlerde Veri Analizi için MATLAB İstatistik Araç Kutusu Kullanımı

Year 2023, Volume: 18 Issue: 2, 353 - 361, 01.09.2023
https://doi.org/10.55525/tjst.1301937

Abstract

Bu makale, OpenAI tarafından geliştirilen güçlü bir dil modeli olan ChatGPT-3'ün sosyal bilim araştırmaları için MATLAB İstatistik Araç Kutusu (İAK) içindeki potansiyel kullanımını araştırmaktadır. ChatGPT-3, çok çeşitli doğal dil işleme görevlerinde dikkate değer performans gösteren oldukça gelişmiş bir modeldir. Bununla birlikte, sosyal bilim araştırmalarında kullanımı hala nispeten yenidir ve geniş çapta araştırılmamıştır. ChatGPT-3'ü sosyal bilim araştırmalarında kullanmanın temel avantajı, sosyal bilim araştırmalarında giderek yaygınlaşan büyük miktarlarda yapılandırılmamış metin verilerini işleyebilmesidir. Ancak, ChatGPT-3'ü kullanmanın karmaşıklığı, yorumlanamazlığı ve tescilli doğası gibi bazı potansiyel dezavantajları da vardır. Bu makale, sosyal bilim araştırmalarında ChatGPT-3 kullanımının mevcut durumuna genel bir bakış sunmayı ve bu modeli MATLAB İAK içinde kullanmanın potansiyel avantajlarını ve dezavantajlarını tartışmayı amaçlamaktadır. Bu yazıda, ChatGPT-3'ün sosyal bilimler araştırmacılarına MATLAB İAK 'da veri kümelerini işlemelerinde nasıl yardımcı olabileceğinin gösterilmesi amaçlanmaktadır. Çünkü veri analizi, sosyal bilimler araştırmacıları için, sosyal bilim verilerinin çoğu zaman birden çok değişken ve birden çok analiz düzeyi ile karmaşık olabilmesi gibi çeşitli nedenlerle zorlayıcı olabilir. Bu, verilerin anlamlı bir şekilde analiz edilmesini ve yorumlanmasını zorlaştırabilir. Bu nedenle, MATLAB İAK 'da bu tür istatistiksel işlemleri işlemek için ChatGPT-3 istemlerinin kullanıldığı bazı örnek ipuçları sağlanmaktadır. ChatGPT-3'ün verdiği yorumlar analiz edilir. ChatGPT-3'ün MATLAB İAK 'da sosyal bilimler araştırmacıları için iyi bir yardımcı olacağına inanılmaktadır.

References

  • Creswell JW, Creswell JD. Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications, 2017.
  • Smith J, Brown T, Wilson K. Using the MATLAB statistical toolbox to analyze data from a survey of attitudes towards climate change. J. Clim. Res., 2019; 12(3): 123-135.
  • Jones B, Smith J, Davis K. Using the MATLAB statistical toolbox to analyze data from an observational study of child development. J. Child Dev.,2020; 32(4): 345-357.
  • Rao R. Engineering optimization: theory and practice. John Wiley & Sons, 2015.
  • Field A. Discovering statistics using IBM SPSS statistics. Sage, 2013.
  • Wasserman S, Faust K. Social network analysis: methods and applications. Cambridge university press.
  • Frieder S, Pinchetti L, Griffiths RR, Salvatori T, Lukasiewicz T, Petersen PC, Berner J. Mathematical capabilities of chatgpt. 2023; arXiv preprint arXiv:2301.13867.
  • Crokidakis N, Marcio AM, Daniel OC. Questions of science: chatting with ChatGPT about complex systems. 2023; arXiv preprint arXiv:2303.16870.
  • MATLAB Statistical Toolbox documentation. (n.d.), 1994.
  • Brockman J, Conley K, Wang S. The GPT-3 model: Overview and content. OpenAI, 2021. Retrieved from https://beta.openai.com/docs/models/gpt3
  • Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI, 2019. Retrieved from https://openai.com/blog/language-models-are-unsupervised-multitask-learners/
  • Kline RB. Principles and practice of structural equation modeling. New York, NY: Guilford Press, 2015.
  • Senthilnathan S. Usefulness of correlation analysis. Available at SSRN 3416918, 2019.
  • Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J., 2012; 24(3): 69-71.
  • Freund RJ, Wilson WJ, Sa P. Regression analysis. Elsevier, 2006.
  • Kim TK. T test as a parametric statistic. Korean J. Anesthesiol., 2015; 68(6): 540-546.
  • Lars ST, Wold S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst., 1989; 6(4): 259-272.
  • Johnson MA, Price KN. The use of MATLAB in teaching statistical process control. J. Qual. Maint. Eng., 2007; 13(2): 208-223.
  • Abdullah M, Alia M, Yaser J. ChatGPT: Fundamentals, applications and social impacts. 2022 IEEE Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS); 29 November- 1 December 2022; Milan, Italy. pp. 1-8.

Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts

Year 2023, Volume: 18 Issue: 2, 353 - 361, 01.09.2023
https://doi.org/10.55525/tjst.1301937

Abstract

This paper explores the potential usage of ChatGPT-3, a powerful language model developed by OpenAI, within the MATLAB Statistical Toolbox (ST) for social science research. ChatGPT-3 is a highly advanced model that has shown remarkable performance in a wide range of natural language processing tasks. However, its usage in social science research is still relatively new and has not been widely explored. The main advantage of using ChatGPT-3 in social science research is its ability to process large amounts of unstructured text data, which is becoming increasingly prevalent in social science research. However, there are also some potential disadvantages to using ChatGPT-3, such as its complexity, lack of interpretability, and proprietary nature. This paper aims to provide an overview of the current state of ChatGPT-3 usage in social science research and to discuss the potential advantages and disadvantages of using this model within MATLAB ST. This paper, it is aimed to show how ChatGPT-3 can assist social science researchers in MATLAB ST in the processing of their datasets. Because data analysis can be challenging for social science researchers for several reasons as social science data can often be complex, with multiple variables and multiple levels of analysis. This can make it difficult to analyze and interpret the data in a meaningful way. Therefore, some sample hints, where ChatGPT-3 prompts are used to handle such statistical operations in MATLAB ST, are provided. The comments that ChatGPT-3 gives out are analyzed. It is believed that ChatGPT-3 will be a good assistant for social science researchers in MATLAB ST.

References

  • Creswell JW, Creswell JD. Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications, 2017.
  • Smith J, Brown T, Wilson K. Using the MATLAB statistical toolbox to analyze data from a survey of attitudes towards climate change. J. Clim. Res., 2019; 12(3): 123-135.
  • Jones B, Smith J, Davis K. Using the MATLAB statistical toolbox to analyze data from an observational study of child development. J. Child Dev.,2020; 32(4): 345-357.
  • Rao R. Engineering optimization: theory and practice. John Wiley & Sons, 2015.
  • Field A. Discovering statistics using IBM SPSS statistics. Sage, 2013.
  • Wasserman S, Faust K. Social network analysis: methods and applications. Cambridge university press.
  • Frieder S, Pinchetti L, Griffiths RR, Salvatori T, Lukasiewicz T, Petersen PC, Berner J. Mathematical capabilities of chatgpt. 2023; arXiv preprint arXiv:2301.13867.
  • Crokidakis N, Marcio AM, Daniel OC. Questions of science: chatting with ChatGPT about complex systems. 2023; arXiv preprint arXiv:2303.16870.
  • MATLAB Statistical Toolbox documentation. (n.d.), 1994.
  • Brockman J, Conley K, Wang S. The GPT-3 model: Overview and content. OpenAI, 2021. Retrieved from https://beta.openai.com/docs/models/gpt3
  • Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI, 2019. Retrieved from https://openai.com/blog/language-models-are-unsupervised-multitask-learners/
  • Kline RB. Principles and practice of structural equation modeling. New York, NY: Guilford Press, 2015.
  • Senthilnathan S. Usefulness of correlation analysis. Available at SSRN 3416918, 2019.
  • Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J., 2012; 24(3): 69-71.
  • Freund RJ, Wilson WJ, Sa P. Regression analysis. Elsevier, 2006.
  • Kim TK. T test as a parametric statistic. Korean J. Anesthesiol., 2015; 68(6): 540-546.
  • Lars ST, Wold S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst., 1989; 6(4): 259-272.
  • Johnson MA, Price KN. The use of MATLAB in teaching statistical process control. J. Qual. Maint. Eng., 2007; 13(2): 208-223.
  • Abdullah M, Alia M, Yaser J. ChatGPT: Fundamentals, applications and social impacts. 2022 IEEE Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS); 29 November- 1 December 2022; Milan, Italy. pp. 1-8.
There are 19 citations in total.

Details

Primary Language English
Subjects Information Systems Education, Information Systems User Experience Design and Development, Computing Education, Computing Applications in Social Sciences and Education
Journal Section TJST
Authors

Dönüş Şengür 0000-0002-8786-6557

Publication Date September 1, 2023
Submission Date May 24, 2023
Published in Issue Year 2023 Volume: 18 Issue: 2

Cite

APA Şengür, D. (2023). Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts. Turkish Journal of Science and Technology, 18(2), 353-361. https://doi.org/10.55525/tjst.1301937
AMA Şengür D. Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts. TJST. September 2023;18(2):353-361. doi:10.55525/tjst.1301937
Chicago Şengür, Dönüş. “Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences With Chat GPT-3 Prompts”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 353-61. https://doi.org/10.55525/tjst.1301937.
EndNote Şengür D (September 1, 2023) Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts. Turkish Journal of Science and Technology 18 2 353–361.
IEEE D. Şengür, “Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts”, TJST, vol. 18, no. 2, pp. 353–361, 2023, doi: 10.55525/tjst.1301937.
ISNAD Şengür, Dönüş. “Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences With Chat GPT-3 Prompts”. Turkish Journal of Science and Technology 18/2 (September 2023), 353-361. https://doi.org/10.55525/tjst.1301937.
JAMA Şengür D. Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts. TJST. 2023;18:353–361.
MLA Şengür, Dönüş. “Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences With Chat GPT-3 Prompts”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 353-61, doi:10.55525/tjst.1301937.
Vancouver Şengür D. Using of MATLAB Statistics Toolbox for Data Analysis in Social Sciences with Chat GPT-3 prompts. TJST. 2023;18(2):353-61.