Research Article
BibTex RIS Cite

Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids

Year 2024, Volume: 19 Issue: 1, 45 - 53, 28.03.2024
https://doi.org/10.55525/tjst.1368544

Abstract

Diabetes is a disease that affects more than 400 million people worldwide and currently lacks a cure. Monitoring blood sugar levels is crucial in minimizing the effects of this disease and protecting against its complications. Invasive and minimally invasive methods are commonly used traditional approaches for detecting and monitoring blood sugar levels. However, these methods bring along psychological and infectious risks. Currently, efforts are being made to develop a non-invasive method for determining blood sugar levels. Microwaves offer the possibility of non-invasive glucose measurement as they do not cause any harmful effects on human tissue. Furthermore, the complex permeability of blood is sensitive to glucose concentration in the microwave band. In literature, most of the studies are done with vector network analyzers (VNA) to detect blood sugar level noninvasively. In this study, an expensive and bulky VNA is replaced by an affordable microwave source and RMS power detector. The influence of the type and diameter of the test tube material used for non-invasive determination of sugar levels is examined with this setup. Additionally, the effect of the distance between the Vivaldi antennas used during measurements and the test tube is investigated. The results indicate that measurements performed using plastic test tubes yield better results compared to glass test tubes. Moreover, reducing the diameter of the test tube leads to improved outcomes. It has been observed that accurate results cannot be obtained if the antennas and the test tube are too close (<0.5 cm) or too far (>4.5cm) from each other.

References

  • International Diabetes Federation, “IDF Diabetes Atlas 2021 _ IDF Diabetes Atlas,” IDF official website. 2021.
  • Gonzales WV, Mobashsher AT, and Abbosh A, “The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors,” Sensors (Switzerland), vol. 19, no. 4. 2019, doi: 10.3390/s19040800.
  • Mahnashi Y, Qureshi KK, Al-Shehri A, and Attia H, “Microwave-Based Technique for Measuring Glucose Levels in Aqueous Solutions,” in 2023 International Microwave and Antenna Symposium, IMAS 2023, 2023, pp. 1–4, doi: 10.1109/IMAS55807.2023.10066913.
  • Ermeydan EŞ, Değirmenci A, Çankaya İ, and Erdoğan F, “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri,” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 8, no. 1, 2020, doi: 10.29130/dubited.626880.
  • Degirmenci A, “Performance Comparison of kNN, Random Forest and SVM in the Prediction of Cervical Cancer from Behavioral Risk,” Int. J. Innov. Sci. Res. Technol., vol. 7, no. 10, 2022.
  • Değirmenci A, Çankaya İ, Gümüşkaya Öcal B, and Karal Ö, “TCGA Verilerinden H&E ile Boyanmış Örneklerden Mesane Kanseri Derecelendirmesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 11, no. 2, 2023, doi: 10.29109/gujsc.1232028.
  • Zhang J, Hodge W, Hutnick C, and Wang X, “Noninvasive diagnostic devices for diabetes through measuring tear glucose,” Journal of Diabetes Science and Technology, vol. 5, no. 1. 2011, doi: 10.1177/193229681100500123.
  • Malik S, Gupta S, Khadgawat R, and Anand S, “A novel non-invasive blood glucose monitoring approach using saliva,” 2015, doi: 10.1109/SPICES.2015.7091562.
  • Guo D, Zhang D, Zhang L, and Lu G, “Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis,” Sensors Actuators, B Chem., vol. 173, 2012, doi: 10.1016/j.snb.2012.06.025.
  • Gao W, et al., “Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis,” Nature, vol. 529, no. 7587, 2016, doi: 10.1038/nature16521.
  • Shaker G, Chen R, Milligan B, and Qu T, “Ambient electromagnetic energy harvesting system for on-body sensors,” Electron. Lett., vol. 52, no. 22, 2016, doi: 10.1049/el.2016.3123.
  • Xue Y, Thalmayer AS, Zeising S, Fischer G, and Lübke M, Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review, vol. 22, no. 2. 2022.
  • Kang JW, et al., “Direct observation of glucose fingerprint using in vivo Raman spectroscopy,” Sci. Adv., vol. 6, no. 4, 2020, doi: 10.1126/sciadv.aay5206.
  • Ebrahimi A, Scott J, and Ghorbani K, “Microwave reflective biosensor for glucose level detection in aqueous solutions,” Sensors Actuators, A Phys., vol. 301, p. 111662, 2020, doi: 10.1016/j.sna.2019.111662.
  • Govind G and Akhtar MJ, “Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions,” IEEE Sens. J., vol. 19, no. 24, 2019, doi: 10.1109/JSEN.2019.2938853.
  • Saleh G, Ateeq IS, and Al-Naib I, “Glucose level sensing using single asymmetric split ring resonator,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21092945.
  • Omer AE, Gigoyan S, Shaker G, and Safavi-Naeini S, “WGM-Based Sensing of Characterized Glucose- Aqueous Solutions at mm-Waves,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2975805.
  • Göktaş ÖF, Çankaya İ, and Ermeydan EŞ, “Mi̇li̇metre dalga bandinda i̇nvazi̇f olmayan bi̇r yöntem i̇le sivilarda gli̇koz sevi̇yesi̇ni̇n beli̇rlenmesi̇,” pp. 1235–1248, 2022, doi: 10.17482/uumfd.1125289.
  • Zhang R, et al., “Noninvasive Electromagnetic Wave Sensing of Glucose,” doi: 10.3390/s19051151.
  • Smulders PFM, Buysse MG, and Huang MD, “Dielectric properties of glucose solutions in the 0.5-67 GHz range,” Microw. Opt. Technol. Lett., vol. 55, no. 8, 2013, doi: 10.1002/mop.27672.
  • Lazebnik M, et al., “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries,” Phys. Med. Biol., vol. 52, no. 20, 2007, doi: 10.1088/0031-9155/52/20/002.
  • Alison JM and Sheppard RJ, “Dielectric properties of human blood at microwave frequencies,” Phys. Med. Biol., vol. 38, no. 7, 1993, doi: 10.1088/0031-9155/38/7/007.
  • Gennarelli G, Romeo S, Scarfi MR, and Soldovieri F, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J., vol. 13, no. 5, pp. 1857–1864, 2013, doi: 10.1109/JSEN.2013.2244035.
  • Topsakal E, Karacolak T, and Moreland EC, “Glucose-dependent dielectric properties of blood plasma,” 2011 30th URSI Gen. Assem. Sci. Symp. URSIGASS 2011, pp. 1–4, 2011, doi: 10.1109/URSIGASS.2011.6051324.
  • Agrawal H, JainP, and Joshi AM, “Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare,” Health Technol. (Berl)., vol. 12, no. 5, 2022, doi: 10.1007/s12553-022-00690-7.
  • Kumar A, et al., “High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection,” Sensors (Switzerland), vol. 20, no. 14, 2020, doi: 10.3390/s20144024.
  • Yilmaz T, Foster R, and Hao Y, “Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, 2014, doi: 10.1109/TMTT.2014.2365019.
  • Pozar DM, David M - Microwave engineering-Wiley (2012), vol. 4. 2011.
  • Nella A, Aldhaheri RW, Kamili JB, and Sobahi NM, “A non - invasive method of glucose monitoring using FR4 material based microwave antenna sensor,” 2023.
  • Gibson PJ, “VIVALDI AERIAL.,” 1979, doi: 10.1109/euma.1979.332681.
  • Maruddani B, Sandi E, and Fadhil Naufal Salam M, “Design and Implementation of Low-cost Wideband Vivaldi Antenna for Ground Penetrating Radar,” KnE Soc. Sci., vol. 3, no. 12, 2019, doi: 10.18502/kss.v3i12.4118.

Sıvılarda Glikoz Seviyesinin Ölçülmesi İçin Optimum Test Koşullarının Belirlenmesi

Year 2024, Volume: 19 Issue: 1, 45 - 53, 28.03.2024
https://doi.org/10.55525/tjst.1368544

Abstract

Diyabet, dünya çapında 400 milyondan fazla insanı etkileyen ve şu anda tedavisi bulunmayan bir hastalıktır. Kan şekerinin takibi bu hastalığın etkilerini en aza indirmek ve komplikasyonlarından korunmak açısından çok önemlidir. İnvaziv ve minimal invaziv yöntemler, kan şekeri seviyelerinin tespiti ve izlenmesinde yaygın olarak kullanılan geleneksel yaklaşımlardır. Ancak bu yöntemler psikolojik ve bulaşıcı riskleri de beraberinde getirmektedir. Şu anda kan şekeri seviyelerini invazif olmayan bir yöntem geliştirerek belirlemek için çaba sarf edilmektedir. Mikrodalgalar insan dokusu üzerinde herhangi bir zararlı etkiye neden olmadığından, invaziv olmayan glikoz ölçümü olanağı sunmaktadır. Ayrıca kanın kompleks geçirgenliği mikrodalga bandındaki glikoz konsantrasyonuna duyarlıdır. Literatürde kan şekeri düzeyinin invazif olmayan bir şekilde tespit edilmesine yönelik çalışmaların çoğu vektör ağ analizörleri (VNA) ile yapılmaktadır. Bu çalışmada pahalı ve hantal bir VNA'nın yerini uygun fiyatlı bir mikrodalga kaynağı ve RMS güç dedektörü almıştır. Bu kurulumla şeker seviyelerinin invaziv olmayan tespiti için kullanılan test tüpü malzemesinin türü ve çapının etkisi incelenir. Ayrıca ölçümler sırasında kullanılan Vivaldi antenleri ile test tüpü arasındaki mesafenin etkisi araştırılmıştır. Sonuçlar, plastik test tüpleri kullanılarak yapılan ölçümlerin cam test tüplerine göre daha iyi sonuçlar verdiğini göstermektedir. Ayrıca test tüpünün çapının azaltılması daha iyi sonuçlara yol açar. Antenlerin ve test tüpünün birbirine çok yakın (<0,5 cm) veya çok uzak (>4,5 cm) olması durumunda doğru sonuçların alınamayacağı görülmüştür.

References

  • International Diabetes Federation, “IDF Diabetes Atlas 2021 _ IDF Diabetes Atlas,” IDF official website. 2021.
  • Gonzales WV, Mobashsher AT, and Abbosh A, “The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors,” Sensors (Switzerland), vol. 19, no. 4. 2019, doi: 10.3390/s19040800.
  • Mahnashi Y, Qureshi KK, Al-Shehri A, and Attia H, “Microwave-Based Technique for Measuring Glucose Levels in Aqueous Solutions,” in 2023 International Microwave and Antenna Symposium, IMAS 2023, 2023, pp. 1–4, doi: 10.1109/IMAS55807.2023.10066913.
  • Ermeydan EŞ, Değirmenci A, Çankaya İ, and Erdoğan F, “Patolojik Görüntülerin Sıkıştırılmış Algılamasında Ölçüm Matrisi ve Geri Çatma Algoritmalarının Etkileri,” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 8, no. 1, 2020, doi: 10.29130/dubited.626880.
  • Degirmenci A, “Performance Comparison of kNN, Random Forest and SVM in the Prediction of Cervical Cancer from Behavioral Risk,” Int. J. Innov. Sci. Res. Technol., vol. 7, no. 10, 2022.
  • Değirmenci A, Çankaya İ, Gümüşkaya Öcal B, and Karal Ö, “TCGA Verilerinden H&E ile Boyanmış Örneklerden Mesane Kanseri Derecelendirmesi,” Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol., vol. 11, no. 2, 2023, doi: 10.29109/gujsc.1232028.
  • Zhang J, Hodge W, Hutnick C, and Wang X, “Noninvasive diagnostic devices for diabetes through measuring tear glucose,” Journal of Diabetes Science and Technology, vol. 5, no. 1. 2011, doi: 10.1177/193229681100500123.
  • Malik S, Gupta S, Khadgawat R, and Anand S, “A novel non-invasive blood glucose monitoring approach using saliva,” 2015, doi: 10.1109/SPICES.2015.7091562.
  • Guo D, Zhang D, Zhang L, and Lu G, “Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis,” Sensors Actuators, B Chem., vol. 173, 2012, doi: 10.1016/j.snb.2012.06.025.
  • Gao W, et al., “Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis,” Nature, vol. 529, no. 7587, 2016, doi: 10.1038/nature16521.
  • Shaker G, Chen R, Milligan B, and Qu T, “Ambient electromagnetic energy harvesting system for on-body sensors,” Electron. Lett., vol. 52, no. 22, 2016, doi: 10.1049/el.2016.3123.
  • Xue Y, Thalmayer AS, Zeising S, Fischer G, and Lübke M, Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review, vol. 22, no. 2. 2022.
  • Kang JW, et al., “Direct observation of glucose fingerprint using in vivo Raman spectroscopy,” Sci. Adv., vol. 6, no. 4, 2020, doi: 10.1126/sciadv.aay5206.
  • Ebrahimi A, Scott J, and Ghorbani K, “Microwave reflective biosensor for glucose level detection in aqueous solutions,” Sensors Actuators, A Phys., vol. 301, p. 111662, 2020, doi: 10.1016/j.sna.2019.111662.
  • Govind G and Akhtar MJ, “Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions,” IEEE Sens. J., vol. 19, no. 24, 2019, doi: 10.1109/JSEN.2019.2938853.
  • Saleh G, Ateeq IS, and Al-Naib I, “Glucose level sensing using single asymmetric split ring resonator,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21092945.
  • Omer AE, Gigoyan S, Shaker G, and Safavi-Naeini S, “WGM-Based Sensing of Characterized Glucose- Aqueous Solutions at mm-Waves,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2975805.
  • Göktaş ÖF, Çankaya İ, and Ermeydan EŞ, “Mi̇li̇metre dalga bandinda i̇nvazi̇f olmayan bi̇r yöntem i̇le sivilarda gli̇koz sevi̇yesi̇ni̇n beli̇rlenmesi̇,” pp. 1235–1248, 2022, doi: 10.17482/uumfd.1125289.
  • Zhang R, et al., “Noninvasive Electromagnetic Wave Sensing of Glucose,” doi: 10.3390/s19051151.
  • Smulders PFM, Buysse MG, and Huang MD, “Dielectric properties of glucose solutions in the 0.5-67 GHz range,” Microw. Opt. Technol. Lett., vol. 55, no. 8, 2013, doi: 10.1002/mop.27672.
  • Lazebnik M, et al., “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries,” Phys. Med. Biol., vol. 52, no. 20, 2007, doi: 10.1088/0031-9155/52/20/002.
  • Alison JM and Sheppard RJ, “Dielectric properties of human blood at microwave frequencies,” Phys. Med. Biol., vol. 38, no. 7, 1993, doi: 10.1088/0031-9155/38/7/007.
  • Gennarelli G, Romeo S, Scarfi MR, and Soldovieri F, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J., vol. 13, no. 5, pp. 1857–1864, 2013, doi: 10.1109/JSEN.2013.2244035.
  • Topsakal E, Karacolak T, and Moreland EC, “Glucose-dependent dielectric properties of blood plasma,” 2011 30th URSI Gen. Assem. Sci. Symp. URSIGASS 2011, pp. 1–4, 2011, doi: 10.1109/URSIGASS.2011.6051324.
  • Agrawal H, JainP, and Joshi AM, “Machine learning models for non-invasive glucose measurement: towards diabetes management in smart healthcare,” Health Technol. (Berl)., vol. 12, no. 5, 2022, doi: 10.1007/s12553-022-00690-7.
  • Kumar A, et al., “High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection,” Sensors (Switzerland), vol. 20, no. 14, 2020, doi: 10.3390/s20144024.
  • Yilmaz T, Foster R, and Hao Y, “Towards accurate dielectric property retrieval of biological tissues for blood glucose monitoring,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 12, 2014, doi: 10.1109/TMTT.2014.2365019.
  • Pozar DM, David M - Microwave engineering-Wiley (2012), vol. 4. 2011.
  • Nella A, Aldhaheri RW, Kamili JB, and Sobahi NM, “A non - invasive method of glucose monitoring using FR4 material based microwave antenna sensor,” 2023.
  • Gibson PJ, “VIVALDI AERIAL.,” 1979, doi: 10.1109/euma.1979.332681.
  • Maruddani B, Sandi E, and Fadhil Naufal Salam M, “Design and Implementation of Low-cost Wideband Vivaldi Antenna for Ground Penetrating Radar,” KnE Soc. Sci., vol. 3, no. 12, 2019, doi: 10.18502/kss.v3i12.4118.
There are 31 citations in total.

Details

Primary Language English
Subjects Electronics
Journal Section TJST
Authors

Ömer Faruk Göktaş 0000-0002-2021-4052

İlyas Çankaya 0000-0002-6072-3097

Esra Şengün Ermeydan 0000-0002-5953-4301

Publication Date March 28, 2024
Submission Date September 29, 2023
Published in Issue Year 2024 Volume: 19 Issue: 1

Cite

APA Göktaş, Ö. F., Çankaya, İ., & Şengün Ermeydan, E. (2024). Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids. Turkish Journal of Science and Technology, 19(1), 45-53. https://doi.org/10.55525/tjst.1368544
AMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids. TJST. March 2024;19(1):45-53. doi:10.55525/tjst.1368544
Chicago Göktaş, Ömer Faruk, İlyas Çankaya, and Esra Şengün Ermeydan. “Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids”. Turkish Journal of Science and Technology 19, no. 1 (March 2024): 45-53. https://doi.org/10.55525/tjst.1368544.
EndNote Göktaş ÖF, Çankaya İ, Şengün Ermeydan E (March 1, 2024) Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids. Turkish Journal of Science and Technology 19 1 45–53.
IEEE Ö. F. Göktaş, İ. Çankaya, and E. Şengün Ermeydan, “Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids”, TJST, vol. 19, no. 1, pp. 45–53, 2024, doi: 10.55525/tjst.1368544.
ISNAD Göktaş, Ömer Faruk et al. “Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids”. Turkish Journal of Science and Technology 19/1 (March 2024), 45-53. https://doi.org/10.55525/tjst.1368544.
JAMA Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids. TJST. 2024;19:45–53.
MLA Göktaş, Ömer Faruk et al. “Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids”. Turkish Journal of Science and Technology, vol. 19, no. 1, 2024, pp. 45-53, doi:10.55525/tjst.1368544.
Vancouver Göktaş ÖF, Çankaya İ, Şengün Ermeydan E. Determination of the Optimum Test Conditions for Measurement of Glucose Level in Liquids. TJST. 2024;19(1):45-53.