Research Article
BibTex RIS Cite

Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework

Year 2025, Volume: 20 Issue: 1, 29 - 40
https://doi.org/10.55525/tjst.1483617

Abstract

This study is aimed to be conducted on invasive ductal carcinoma breast cancer, which is a type of cancer that is common around the world and found in women. Early diagnosis of this disease can be lifesaving. It was aimed to conduct the study to determine the early diagnosis of breast cancer due to its early detection feature. In addition to deep learning techniques, image processing techniques were also used in the study. A dataset consisting of breast cancer images was used. The images in the data set may be complicated or time-consuming when evaluated using traditional diagnostic methods. This is where deep learning models come into play. The models used in the study analyzed breast cancer cells. As a result of the analysis, cells were classified as cancerous or cancer-free. Five different models were used in this study: CNN, SVM, Random Forest, DenseNet and MobileNet. When the results were examined, it was analyzed that the proposed method showed better performance than other methods. The accuracy rates of the models were: CNN (95.1%), SVM (89.87%), Random Forest (93.21%), DenseNet (94.31%), and MobileNet (94.6%). In conclusion, this study reveals the differences between models used in breast cancer diagnosis. In this period when the importance of artificial intelligence increases, it is predicted that it will be an important step in saving breast cancer patients. If the methods are used efficiently and effectively, the rate of early diagnosis will increase and diseases will be prevented.

References

  • Waks AG, Winer EP. Breast cancer treatment. JAMA 2019; 321(3): 316-316.
  • Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol 2014; 5(3): 283.
  • Barroso-Sousa R, Metzger-Filho O. Differences between invasive lobular and invasive ductal carcinoma of the breast: results and therapeutic implications. Ther Adv Med Oncol 2016; 8(4): 261-266.
  • Sharma GN, Dave R, Sanadya J, Sharma P. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 2010; 1(2): 109.
  • Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform 2016; 7(1): 29.
  • Shahidi F, Daud SM, Abas H, Ahmad NA, Maarop N. Breast cancer classification using deep learning approaches and histopathology images: a comparison study. IEEE Access 2020; 8: 187531-187552.
  • Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review. Expert Syst Appl 2021; 167: 114161.
  • Zahoor S, Lali IU, Khan MA, Javed K, Mehmood W. Breast cancer detection and classification using traditional computer vision techniques: a comprehensive review. Curr Med Imaging 2020; 16(10): 1187-1200.
  • Zhang YN, Xia KR, Li CY, Wei BL, Zhang B. Review of breast cancer pathological image processing. Biomed Res Int 2021; 2021: 1-7.
  • Kanojia MG, Ansari MAMH, Gandhi N, Yadav SK. Image processing techniques for breast cancer detection: A review. In: Intelligent Systems Design and Applications: 19th International Conference on Intelligent Systems Design and Applications (ISDA 2019) held December 3-5, 2019. Springer International Publishing; 2019. p. 649-660.
  • Rezaei Z. A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst Appl 2021; 182: 115204.
  • Lu Y, Li JY, Su YT, Liu AA. A review of breast cancer detection in medical images. In: 2018 IEEE Visual Communications and Image Processing (VCIP); 2018. p. 1-4.
  • Mashekova A, Zhao Y, Ng EY, Zarikas V, Fok SC, Mukhmetov O. Early detection of breast cancer using infrared technology: A comprehensive review. Thermal Sci Eng Progress 2022; 27: 101142.
  • Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-1685.
  • Sharma N, Sharma R, Jindal N. Machine learning and deep learning applications: a vision. Global Transitions Proceedings 2021; 2(1): 24-28.
  • Ahmad Z, Shahid Khan A, Wai Shiang C, Abdullah J, Ahmad F. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Trans Emerg Telecommun Technol 2021; 32(1): e4150.
  • Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P. Prediction of heart disease using a combination of machine learning and deep learning. Comput Intell Neurosci 2021; 2021: 1-8.
  • Dushyant K, Muskan G, Annu G, Pramanik S. Utilizing Machine Learning and Deep Learning in Cybersecurity: An Innovative Approach. Cyber Security and Digital Forensics 2022; 1: 271-293.
  • Osisanwo FY, Akinsola JET, Awodele O, Hinmikaiye JO, Olakanmi O, Akinjobi J. Supervised machine learning algorithms: classification and comparison. Int J Comput Trends Technol 2017; 48(3): 128-138.
  • Liu Y, Wang Y, Zhang J. New machine learning algorithm: Random forest. In: Information Computing and Applications: Third International Conference, ICICA 2012; 2012. p. 246-252. Springer Berlin Heidelberg.
  • Wang Z, Qu Z. Research on web text classification algorithm based on improved CNN and SVM. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT); 2017. p. 1958-1961.
  • Li T, Jiao W, Wang LN, Zhong G. Automatic DenseNet sparsification. IEEE Access 2020; 8: 62561-62571.
  • Li Y, Huang H, Xie Q, Yao L, Chen Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl Sci 2018; 8(9): 1678.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 2015; 63(7): 1455-1462.
  • Narayanan BN, Krishnaraja V, Ali R. Convolutional neural network for classification of histopathology images for breast cancer detection. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON); 2019. p. 291-295.
  • Reshma VK, Arya N, Ahmad SS, Wattar I, Mekala S, Joshi S, Krah D. Detection of breast cancer using histopathological image classification dataset with deep learning techniques. Biomed Res Int 2022; 2022: 1-8.
  • Brancati N, Anniciello AM, Pati P, Riccio D, Scognamiglio G, Jaume G, Frucci M. BRACS: A dataset for breast carcinoma subtyping in H&E histology images. Database 2022; 2022: baac093.
  • Aswathy MA, Jagannath M. An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features. Med Biol Eng Comput 2021; 59(9): 1773-1783.
  • Singh S, Kumar R. Breast cancer detection from histopathology images with deep inception and residual blocks. Multimedia Tools Appl 2022; 81(4): 5849-5865.
  • Güler H, Santur Y, Ulaş M. Comparison of machine learning algorithms to predict cardiovascular heart disease risk level. Int J Adv Nat Sci Eng Res 2023; 7(10): 42-49.

Derin öğrenme çerçevesini kullanarak invazif duktal karsinom meme kanserinin erken tanısı

Year 2025, Volume: 20 Issue: 1, 29 - 40
https://doi.org/10.55525/tjst.1483617

Abstract

Bu çalışma, dünya genelinde kadınlarda yaygın olarak görülen invazif duktal karsinom meme kanseri üzerine odaklanmaktadır. Erken teşhis, hayat kurtarıcı olabilecek bu kanser türü için kritiktir. Çalışmanın amacı, meme kanserinin erken teşhisini belirlemek için derin öğrenme ve görüntü işleme tekniklerini kullanmaktır. Meme kanseri adlı bir veri seti, geleneksel tanı yöntemleriyle değerlendirildiğinde karmaşık veya zaman alıcı olabilen görüntüler içermektedir. Derin öğrenme modelleri, bu zorlukları aşmak için kullanılmıştır. Çalışmada kullanılan modeller, meme kanseri hücrelerini analiz etmiş ve kötü hücrelere sahip olanları kanserli, iyi hücrelere sahip olanları kansersiz olarak sınıflandırmıştır. Beş farklı model (CNN, SVM, Random Forest, DenseNet ve MobileNet) kullanılmıştır. Sonuçlar incelendiğinde, önerilen yöntemin diğer metodlara göre daha iyi performans gösterdiği görülmüştür. Modellerin doğruluk oranları sırasıyla şu şekildedir: CNN (%95,1), SVM (%89,87), Random Forest (%93,21), DenseNet (%94,31) ve MobileNet (%94,6). Bu çalışma, meme kanseri tanısında kullanılacak modeller arasındaki farklılıkları ortaya koymaktadır. Yapay zekanın önemi göz önüne alındığında, bu çalışmanın meme kanseri hastalarının kurtarılmasında önemli bir adım olabileceği öngörülmektedir. Yöntemlerin etkin ve verimli bir şekilde kullanılması durumunda, erken tanı oranının artması ve hastalıkların önlenmesi sağlanabilir.

References

  • Waks AG, Winer EP. Breast cancer treatment. JAMA 2019; 321(3): 316-316.
  • Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol 2014; 5(3): 283.
  • Barroso-Sousa R, Metzger-Filho O. Differences between invasive lobular and invasive ductal carcinoma of the breast: results and therapeutic implications. Ther Adv Med Oncol 2016; 8(4): 261-266.
  • Sharma GN, Dave R, Sanadya J, Sharma P. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 2010; 1(2): 109.
  • Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform 2016; 7(1): 29.
  • Shahidi F, Daud SM, Abas H, Ahmad NA, Maarop N. Breast cancer classification using deep learning approaches and histopathology images: a comparison study. IEEE Access 2020; 8: 187531-187552.
  • Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: a comprehensive review. Expert Syst Appl 2021; 167: 114161.
  • Zahoor S, Lali IU, Khan MA, Javed K, Mehmood W. Breast cancer detection and classification using traditional computer vision techniques: a comprehensive review. Curr Med Imaging 2020; 16(10): 1187-1200.
  • Zhang YN, Xia KR, Li CY, Wei BL, Zhang B. Review of breast cancer pathological image processing. Biomed Res Int 2021; 2021: 1-7.
  • Kanojia MG, Ansari MAMH, Gandhi N, Yadav SK. Image processing techniques for breast cancer detection: A review. In: Intelligent Systems Design and Applications: 19th International Conference on Intelligent Systems Design and Applications (ISDA 2019) held December 3-5, 2019. Springer International Publishing; 2019. p. 649-660.
  • Rezaei Z. A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst Appl 2021; 182: 115204.
  • Lu Y, Li JY, Su YT, Liu AA. A review of breast cancer detection in medical images. In: 2018 IEEE Visual Communications and Image Processing (VCIP); 2018. p. 1-4.
  • Mashekova A, Zhao Y, Ng EY, Zarikas V, Fok SC, Mukhmetov O. Early detection of breast cancer using infrared technology: A comprehensive review. Thermal Sci Eng Progress 2022; 27: 101142.
  • Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 2017; 22(11): 1680-1685.
  • Sharma N, Sharma R, Jindal N. Machine learning and deep learning applications: a vision. Global Transitions Proceedings 2021; 2(1): 24-28.
  • Ahmad Z, Shahid Khan A, Wai Shiang C, Abdullah J, Ahmad F. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Trans Emerg Telecommun Technol 2021; 32(1): e4150.
  • Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P. Prediction of heart disease using a combination of machine learning and deep learning. Comput Intell Neurosci 2021; 2021: 1-8.
  • Dushyant K, Muskan G, Annu G, Pramanik S. Utilizing Machine Learning and Deep Learning in Cybersecurity: An Innovative Approach. Cyber Security and Digital Forensics 2022; 1: 271-293.
  • Osisanwo FY, Akinsola JET, Awodele O, Hinmikaiye JO, Olakanmi O, Akinjobi J. Supervised machine learning algorithms: classification and comparison. Int J Comput Trends Technol 2017; 48(3): 128-138.
  • Liu Y, Wang Y, Zhang J. New machine learning algorithm: Random forest. In: Information Computing and Applications: Third International Conference, ICICA 2012; 2012. p. 246-252. Springer Berlin Heidelberg.
  • Wang Z, Qu Z. Research on web text classification algorithm based on improved CNN and SVM. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT); 2017. p. 1958-1961.
  • Li T, Jiao W, Wang LN, Zhong G. Automatic DenseNet sparsification. IEEE Access 2020; 8: 62561-62571.
  • Li Y, Huang H, Xie Q, Yao L, Chen Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl Sci 2018; 8(9): 1678.
  • Spanhol FA, Oliveira LS, Petitjean C, Heutte L. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 2015; 63(7): 1455-1462.
  • Narayanan BN, Krishnaraja V, Ali R. Convolutional neural network for classification of histopathology images for breast cancer detection. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON); 2019. p. 291-295.
  • Reshma VK, Arya N, Ahmad SS, Wattar I, Mekala S, Joshi S, Krah D. Detection of breast cancer using histopathological image classification dataset with deep learning techniques. Biomed Res Int 2022; 2022: 1-8.
  • Brancati N, Anniciello AM, Pati P, Riccio D, Scognamiglio G, Jaume G, Frucci M. BRACS: A dataset for breast carcinoma subtyping in H&E histology images. Database 2022; 2022: baac093.
  • Aswathy MA, Jagannath M. An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features. Med Biol Eng Comput 2021; 59(9): 1773-1783.
  • Singh S, Kumar R. Breast cancer detection from histopathology images with deep inception and residual blocks. Multimedia Tools Appl 2022; 81(4): 5849-5865.
  • Güler H, Santur Y, Ulaş M. Comparison of machine learning algorithms to predict cardiovascular heart disease risk level. Int J Adv Nat Sci Eng Res 2023; 7(10): 42-49.
There are 30 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other), Artificial Intelligence (Other)
Journal Section TJST
Authors

Hakan Güler 0000-0002-7599-5431

Yunus Santur 0000-0002-8942-4605

Mustafa Ulaş 0000-0002-0096-9693

Publication Date
Submission Date May 13, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Güler, H., Santur, Y., & Ulaş, M. (n.d.). Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework. Turkish Journal of Science and Technology, 20(1), 29-40. https://doi.org/10.55525/tjst.1483617
AMA Güler H, Santur Y, Ulaş M. Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework. TJST. 20(1):29-40. doi:10.55525/tjst.1483617
Chicago Güler, Hakan, Yunus Santur, and Mustafa Ulaş. “Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer Using Deep Learning Framework”. Turkish Journal of Science and Technology 20, no. 1 n.d.: 29-40. https://doi.org/10.55525/tjst.1483617.
EndNote Güler H, Santur Y, Ulaş M Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework. Turkish Journal of Science and Technology 20 1 29–40.
IEEE H. Güler, Y. Santur, and M. Ulaş, “Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework”, TJST, vol. 20, no. 1, pp. 29–40, doi: 10.55525/tjst.1483617.
ISNAD Güler, Hakan et al. “Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer Using Deep Learning Framework”. Turkish Journal of Science and Technology 20/1 (n.d.), 29-40. https://doi.org/10.55525/tjst.1483617.
JAMA Güler H, Santur Y, Ulaş M. Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework. TJST.;20:29–40.
MLA Güler, Hakan et al. “Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer Using Deep Learning Framework”. Turkish Journal of Science and Technology, vol. 20, no. 1, pp. 29-40, doi:10.55525/tjst.1483617.
Vancouver Güler H, Santur Y, Ulaş M. Early Diagnosis of Invasive Ductal Carcinoma Breast Cancer using Deep Learning Framework. TJST. 20(1):29-40.