A New Optimization Model for Rotary-Wing Air Vehicle Propeller Design
Year 2025,
Volume: 20 Issue: 1, 159 - 172, 27.03.2025
Ukbe Usame Uçar
,
Burak Tanyeri
,
Zehra Ural Bayrak
Abstract
IIn this study, the propeller characteristics of the aircraft have been optimized in terms of stabilization and manoeuvrability and it has been aimed to find the ideal propeller dimensions for the aircraft. A mathematical modelling has been developed for optimization and four different objectives are simultaneously optimized in the model. The results have been compared with simulation, analysis and real results. Gams and MATLAB programs have been used for developed mathematical model and simulation algorithm, respectively, and ANSYS program has been also used for CFD analysis. It has been observed that CFD analysis and mathematical model results are parallel to each other. As a result of the analysis, thanks to the developed model, a 6.47% improvement has been achieved in efficiency compared to the existing propeller system. In addition, an improvement of 3.93 times in “thrust” and 3.86 times in “total lift force” has been provided. Finally, it has been reported that the total drag force has been successfully minimized.
References
- Bacciaglia A, Ceruti A, and Liverani A. Controllable pitch propeller optimization through meta-heuristic algorithm. Eng Comput 2021; 37:2257-2271.
- Podsędkowski M, Konopiński R, Obidowski D, and Koter K. Variable pitch propeller for UAV-experimental tests. Energies 2020; 13(5264).
- Gur O, and Rosen A. Optimization of propeller based propulsion system, J Aircr 2009; 46(1): 95-106.
- Dundar O, Bilici M, and Unler T. Design and performance analyses of a fixed wing battery VTOL UAV. Eng Sci Technol Int J 2020, 23(5): 1182-1193.
- ElGhazali AF, and Dol SS. Aerodynamic optimization of unmanned aerial vehicle through propeller improvements. J Appl Fluid Mech 2020; 13(3): 793-803.
- Gaggero S, Tani G, Villa D, Viviani M, Ausonio P, Travi P, Bizzarri G. and Serra F. Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft. Appl Ocean Res 2017; 64: 31-57.
- Zhang H, Song B, Li F. and Xuan J. Multidisciplinary design optimization of an electric propulsion system of a hybrid UAV considering wind disturbance rejection capability in the quadrotor mode. Aerosp Sci Technol 2021; 110: 106372.
- Zhao A, Zhang J, Li K. and D. Wen. Design and implementation of an innovative airborne electric propulsion measure system of fixed-wing UAV. Aerosp Sci Technol 2021; 109: 106357.
- Bayraktar O, and Guldas A. Optimization of Quadrotor’s Thrust and Torque Coefficients and Simulation with Matlab/Simulink. J Polytechnic 2020; 23(4): 1197-1204.
- Foeth EJ, and Lafeber F. Systematic propeller optimization using an unsteady Boundary Element Method, In Fourth Int Symp on Mar Propulsors (SMP15) Austin; 25 October 2015; TX, USA,
- Lee Y, Park E-T, Jeong J, Shi H, Kim J, Kang B-S and Song W. Weight optimization of hydrogen storage vessels for quadcopter UAV using genetic algorithm. Int J Hydrogen Energy 2020; 45: 33939-33947.
- Magnussen Ø, Ottestad M and Hovland G, Multicopter design optimization and validation. Modell Identif Control 2015; 36(2): 67-79.
- Onay OK, Khalılov J, Ostovan Y, Cete AR, Açıkyol R, Buzkıran M and Yortucboylu. Developing the design, analysis and testing capabilities of unmanned aerial vehicle propellers. IV. National Aeronaut Space Conf.; 12-14 September 2012; Air Force Academy, İstanbul.
- Sinibaldi G, and Marino L. Experimental analysis on the noise of propellers for small UAV. Appl Acoustics 2013; 74(1): 79-88.
- Kuantama E, and Tarca R. Quadcopter thrust optimization with ducted-propeller. In MATEC Web of Conf 2017; 126 (01002).
- Larocca F, D’ambrosıo D, Raiola L, Tutor, A. and Zamboni, E. F. Topological optimization of a drone propeller using commercial CFD code. Master’s Thesis in Aerosp Eng Politecnico Di Torino, Italy, 2019.
- Mian HH, Wang G, Zhou H, and Wu X. Optimization of thin electric propeller using physics-based surrogate model with space mapping. Aerosp Sci Technol 2021; 111(106563).
- Kapsalis S, Panagiotou P and Yakinthos K. CFD-aided optimization of a tactical Blended-Wing-Body UAV platform using the Taguchi method. Aerosp Sci Technol 2021; 108: 106395.
- Dahal C, Dura HB and Poudel L. Design and analysis of propeller for high altitude search and rescue unmanned aerial vehicle. Int J Aerosp Eng 2021; 2021: 1-13.
- Delbecq S, Budinger M, Ochotorena A, Reysset A and F Defay. Efficient sizing and optimization of multirotor drones based on scaling laws and similarity models. Aerosp Sci Technol 2020:102105873.
- McKay RS, Kingan MJ, Go ST and R Jung. Experimental and analytical investigation of contra-rotating multi-rotor UAV propeller noise. Appl Acoustics 2021; 177: 107850.
- Yeong SP and Dol SS. Aerodynamic optimization of micro aerial vehicle. J Appl Fluid Mech 2016; 9(5): 2111-2121.
- Andria G, Di Nisio A, Lanzolla AML, Spadevecchia M, Pascazio G, Antonacci F and Sorrentino GM. Design and performance evaluation of drone propellers, In 2018 5th IEEE Int. Workshop on Metrol for AeroSp; 20-22 June 2018; Rome, Italy: pp. 407-412.
- Iannace G, Ciaburro G and Trematerra A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019; 8(59).
- Dumitrache A, Pricop, MV, Niculescu ML, Cojocaru MG and Ionescu T. Design and analysis methods for UAV rotor blades. Sci Res & Educ in the Air Force 2017; 19: 115-126.
- Wang M, Zhang S, Diepolde J and Holzapfel F. Battery package design optimization for small electric aircraft. Chin J Aeronaut 2020; 33(11):2864–2876.
- Raiola L. Topological optimization of a drone propeller using commercial CFD code, Master’s Thesis, Politecnico Di Torino, Torino, Italy, 2020.
- Guan G., Zhang X, Wang P, and Yang Q. Multi-objective optimization design method of marine propeller based on fluid-structure interaction. Ocean Eng 2022; 252:111222.
- Mirjalili S, Lewis A and Mirjalili SAM. Multi-objective optimisation of marine propellers. Procedia Comput Sci 2015; 51: 2247-2256.
- Xie G. Optimal preliminary propeller design based on multi-objective optimization approach. Procedia Eng 2011; 16: 278-283.
- Gypa I, Jansson M, Wolff K, and Bensow R. Propeller optimization by interactive genetic algorithms and machine learning. Ship Technol Res 2023; 70(1): 56-71.
- Rostami M, Chung J and Park HU. Design optimization of multi-objective proportional–integral–derivative controllers for enhanced handling quality of a twin-engine, propeller-driven airplane. Adv Mech Eng 2020; 12(6), 1-15.
- Xia X, Ma D, Zhang L, Liu XA and Cong K. Blade shape optimization and analysis of a propeller for VTOL based on an inverse method. Appl Sci 2022; 12(7), 3694.
- Kamarlouei M, Ghassemi H, Aslansefat K, and Nematy D. Multi-objective evolutionary optimization technique applied to propeller design. Acta Polytech Hung 2014; 11(9): 163-182.
- Schatz ME, Hermanutz A and Baier HJ. Multi-criteria optimization of an aircraft propeller considering manufacturing: Structural design optimization simultaneously considering a knowledge-based manufacturing and a structural model. Struct Multidiscip Optim 2017; 55: 899-911.
- Baker SP, Shanahan DF, Haaland W, Brady JE and Li G. Helicopter crashes related to oil and gas operations in the Gulf of Mexico. Aviat Space and Environ Med 2011; 82(9): 885-889.
Döner Kanatlı Hava Aracı Pervanesi Tasarımı için Yeni Bir Optimizasyon Modeli
Year 2025,
Volume: 20 Issue: 1, 159 - 172, 27.03.2025
Ukbe Usame Uçar
,
Burak Tanyeri
,
Zehra Ural Bayrak
Abstract
Bu çalışmada, uçağın pervane karakteristikleri stabilizasyon ve manevra kabiliyeti açısından optimize edilmiş ve uçak için ideal pervane boyutlarının bulunması amaçlanmıştır. Optimizasyon için yeni bir matematiksel model geliştirilmiş ve modelde dört farklı hedef aynı anda optimize edilmiştir. Elde edilen sonuçlar simülasyon, analiz ve gerçek sonuçlar ile karşılaştırılmıştır. Geliştirilen matematiksel model ve simülasyon algoritması için sırasıyla Gams ve MATLAB programı kullanılmış, CFD analizi için de ANSYS programı kullanılmıştır. CFD analizi ve matematiksel model sonuçlarının birbirine paralel olduğu gözlemlenmiştir. Analiz sonucunda, geliştirilen model sayesinde mevcut pervane sistemine göre verimlilikte %6,47'lik bir iyileşme sağlanmıştır. Ayrıca “itme kuvvetinde” 3,93 kat, “toplam kaldırma kuvvetinde” ise 3,86 kat iyileşme sağlanmıştır. Son olarak toplam sürükleme kuvvetinin başarılı bir şekilde minimize edildiği tespit edilmiştir.
References
- Bacciaglia A, Ceruti A, and Liverani A. Controllable pitch propeller optimization through meta-heuristic algorithm. Eng Comput 2021; 37:2257-2271.
- Podsędkowski M, Konopiński R, Obidowski D, and Koter K. Variable pitch propeller for UAV-experimental tests. Energies 2020; 13(5264).
- Gur O, and Rosen A. Optimization of propeller based propulsion system, J Aircr 2009; 46(1): 95-106.
- Dundar O, Bilici M, and Unler T. Design and performance analyses of a fixed wing battery VTOL UAV. Eng Sci Technol Int J 2020, 23(5): 1182-1193.
- ElGhazali AF, and Dol SS. Aerodynamic optimization of unmanned aerial vehicle through propeller improvements. J Appl Fluid Mech 2020; 13(3): 793-803.
- Gaggero S, Tani G, Villa D, Viviani M, Ausonio P, Travi P, Bizzarri G. and Serra F. Efficient and multi-objective cavitating propeller optimization: An application to a high-speed craft. Appl Ocean Res 2017; 64: 31-57.
- Zhang H, Song B, Li F. and Xuan J. Multidisciplinary design optimization of an electric propulsion system of a hybrid UAV considering wind disturbance rejection capability in the quadrotor mode. Aerosp Sci Technol 2021; 110: 106372.
- Zhao A, Zhang J, Li K. and D. Wen. Design and implementation of an innovative airborne electric propulsion measure system of fixed-wing UAV. Aerosp Sci Technol 2021; 109: 106357.
- Bayraktar O, and Guldas A. Optimization of Quadrotor’s Thrust and Torque Coefficients and Simulation with Matlab/Simulink. J Polytechnic 2020; 23(4): 1197-1204.
- Foeth EJ, and Lafeber F. Systematic propeller optimization using an unsteady Boundary Element Method, In Fourth Int Symp on Mar Propulsors (SMP15) Austin; 25 October 2015; TX, USA,
- Lee Y, Park E-T, Jeong J, Shi H, Kim J, Kang B-S and Song W. Weight optimization of hydrogen storage vessels for quadcopter UAV using genetic algorithm. Int J Hydrogen Energy 2020; 45: 33939-33947.
- Magnussen Ø, Ottestad M and Hovland G, Multicopter design optimization and validation. Modell Identif Control 2015; 36(2): 67-79.
- Onay OK, Khalılov J, Ostovan Y, Cete AR, Açıkyol R, Buzkıran M and Yortucboylu. Developing the design, analysis and testing capabilities of unmanned aerial vehicle propellers. IV. National Aeronaut Space Conf.; 12-14 September 2012; Air Force Academy, İstanbul.
- Sinibaldi G, and Marino L. Experimental analysis on the noise of propellers for small UAV. Appl Acoustics 2013; 74(1): 79-88.
- Kuantama E, and Tarca R. Quadcopter thrust optimization with ducted-propeller. In MATEC Web of Conf 2017; 126 (01002).
- Larocca F, D’ambrosıo D, Raiola L, Tutor, A. and Zamboni, E. F. Topological optimization of a drone propeller using commercial CFD code. Master’s Thesis in Aerosp Eng Politecnico Di Torino, Italy, 2019.
- Mian HH, Wang G, Zhou H, and Wu X. Optimization of thin electric propeller using physics-based surrogate model with space mapping. Aerosp Sci Technol 2021; 111(106563).
- Kapsalis S, Panagiotou P and Yakinthos K. CFD-aided optimization of a tactical Blended-Wing-Body UAV platform using the Taguchi method. Aerosp Sci Technol 2021; 108: 106395.
- Dahal C, Dura HB and Poudel L. Design and analysis of propeller for high altitude search and rescue unmanned aerial vehicle. Int J Aerosp Eng 2021; 2021: 1-13.
- Delbecq S, Budinger M, Ochotorena A, Reysset A and F Defay. Efficient sizing and optimization of multirotor drones based on scaling laws and similarity models. Aerosp Sci Technol 2020:102105873.
- McKay RS, Kingan MJ, Go ST and R Jung. Experimental and analytical investigation of contra-rotating multi-rotor UAV propeller noise. Appl Acoustics 2021; 177: 107850.
- Yeong SP and Dol SS. Aerodynamic optimization of micro aerial vehicle. J Appl Fluid Mech 2016; 9(5): 2111-2121.
- Andria G, Di Nisio A, Lanzolla AML, Spadevecchia M, Pascazio G, Antonacci F and Sorrentino GM. Design and performance evaluation of drone propellers, In 2018 5th IEEE Int. Workshop on Metrol for AeroSp; 20-22 June 2018; Rome, Italy: pp. 407-412.
- Iannace G, Ciaburro G and Trematerra A. Fault diagnosis for UAV blades using artificial neural network. Robotics 2019; 8(59).
- Dumitrache A, Pricop, MV, Niculescu ML, Cojocaru MG and Ionescu T. Design and analysis methods for UAV rotor blades. Sci Res & Educ in the Air Force 2017; 19: 115-126.
- Wang M, Zhang S, Diepolde J and Holzapfel F. Battery package design optimization for small electric aircraft. Chin J Aeronaut 2020; 33(11):2864–2876.
- Raiola L. Topological optimization of a drone propeller using commercial CFD code, Master’s Thesis, Politecnico Di Torino, Torino, Italy, 2020.
- Guan G., Zhang X, Wang P, and Yang Q. Multi-objective optimization design method of marine propeller based on fluid-structure interaction. Ocean Eng 2022; 252:111222.
- Mirjalili S, Lewis A and Mirjalili SAM. Multi-objective optimisation of marine propellers. Procedia Comput Sci 2015; 51: 2247-2256.
- Xie G. Optimal preliminary propeller design based on multi-objective optimization approach. Procedia Eng 2011; 16: 278-283.
- Gypa I, Jansson M, Wolff K, and Bensow R. Propeller optimization by interactive genetic algorithms and machine learning. Ship Technol Res 2023; 70(1): 56-71.
- Rostami M, Chung J and Park HU. Design optimization of multi-objective proportional–integral–derivative controllers for enhanced handling quality of a twin-engine, propeller-driven airplane. Adv Mech Eng 2020; 12(6), 1-15.
- Xia X, Ma D, Zhang L, Liu XA and Cong K. Blade shape optimization and analysis of a propeller for VTOL based on an inverse method. Appl Sci 2022; 12(7), 3694.
- Kamarlouei M, Ghassemi H, Aslansefat K, and Nematy D. Multi-objective evolutionary optimization technique applied to propeller design. Acta Polytech Hung 2014; 11(9): 163-182.
- Schatz ME, Hermanutz A and Baier HJ. Multi-criteria optimization of an aircraft propeller considering manufacturing: Structural design optimization simultaneously considering a knowledge-based manufacturing and a structural model. Struct Multidiscip Optim 2017; 55: 899-911.
- Baker SP, Shanahan DF, Haaland W, Brady JE and Li G. Helicopter crashes related to oil and gas operations in the Gulf of Mexico. Aviat Space and Environ Med 2011; 82(9): 885-889.