Otonom Araç Radarları için 79 GHz Fazlı Mikroşerit Anten Dizisinin Besleme Analizi
Year 2025,
Volume: 20 Issue: 2, 465 - 481
Selen Yılmaz
,
Yaser Dalveren
,
Ali Kara
Abstract
Otomotiv radarı, güvenilirliği nedeniyle otonom araçlarda umut vadeden bir algılama teknolojisi olarak bilinmektedir. Günümüz otonom araçlarında, 77 – 81 GHz frekans bandı otomotiv radarları için ana çalışma bandıdır. Otomotiv radarlarının verimli çalışabilmesi için radar anteninin son derece hassas olması gerekir. Ancak, yüksek çalışma frekansları, yüksek kazanç, geniş bant genişliği ve düşük yan lob seviyeleri (SLL) gerektiren radar anteni tasarımında zorluklar ortaya çıkarabilmektedir. Bu sorunu ele almak için, bu çalışmada, eş düzlemli boşluk kaynak portu, dikey toprak köprüsü ve dalga portu dahil olmak üzere üç farklı topraklanmış eş düzlemli dalga kılavuzu (GCPW) besleme konfigürasyonu kullanılarak düzlemsel seri beslemeli doğrusal bir anten dizisinin 79 GHz otomotiv radar uygulamalarına uyarlaması amaçlanmaktadır. Antenin besleme yapılandırmalarıyla performansını değerlendirmek için benzetimler yürütülmüştür. Elde edilen sonuçlara göre, dalga portu beslemeli antenin en iyi empedans bant genişliğini (>3 GHz) elde ettiği, eş düzlemli boşluk kaynak portu veya dikey toprak köprüsü konfigürasyonları beslemeli antenin ise daha iyi ana lob faz merkezlemesi ve daha yüksek bir kazanç (>18,4 dBi) sergilediği, yan lob seviyelerinin (SLL) -16,28 dB’nin altında olduğu gösterilmiştir. Bu bulguların, yeni nesil otonom araçlar için yüksek performanslı radar antenlerinin geliştirilmesine katkıda bulunabileceği düşünülmektedir.
References
-
Global status report on road safety 2018. Accessed: Apr. 11, 2023. [Online]. Available: https://www.who.int/publications-detail-redirect/9789241565684
-
Derawi M, Dalveren Y, Cheikh FA. Internet-of-things-based smart transportation systems for safer roads. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT); 02-16 June 2020; New Orleans, LA, USA: IEEE. pp. 1–4.
-
Greenwood PM, Lenneman JK, Baldwin CL. Advanced driver assistance systems (ADAS): Demographics, preferred sources of information, and accuracy of ADAS knowledge. Transp Res Part F Traffic Psychol Behav 2022; 86: 131–150.
-
Yeong DJ, Velasco-Hernandez G, Barry J, Walsh J. Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors 2021; 21(6): 2140.
-
Wang C, Wang X, Hu H, Liang Y, Shen G. On the application of cameras used in autonomous vehicles. Arch Comput Methods Eng 2022; 29(6): 4319–4339.
-
Royo R, Ballesta-Garcia M, An overview of lidar imaging systems for autonomous vehicles. Appl Sci 2019; 9(19), 4093.
-
Bilik I, Longman O, Villeval S, Tabrikian J. The rise of radar for autonomous vehicles: Signal processing solutions and future research directions. IEEE Signal Process. Mag. 2019; 36(5): 20–31.
-
Bilik I, Comparative analysis of radar and lidar technologies for automotive applications. IEEE Intell Transp Syst Mag 2022; 15(1): 244–269.
-
Li L, Ibanez-Guzman J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process Mag 2020, 37(4): 50–61.
-
Patole SM, Torlak M, Wang D, Ali M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017; 34(2): 22–35.
-
Bilik I, Bialer O, Villeval S, Sharifi H, Kona K, Pan M, Persechini D, Musni M, Geary K. Automotive MIMO radar for urban environments. In: 2016 IEEE Radar Conference (RadarConf); 02-06 May 2016; Philadelphia, PA, USA: IEEE. pp. 1–6.
-
Isaacs O, Tabrikian J, Bilik I. Cognitive antenna selection for optimal source localization. In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP); 13-16 December 2015; Cancun, Mexico: IEEE. pp. 341–344.
-
Vargas J, Alsweiss S, Toker O, Razdan R, Santos J. An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors 2021; 21(16): 5397, 2021.
-
Wang X, Stelzer A, A 79-GHz LTCC patch array antenna using a laminated waveguide-based vertical parallel feed. IEEE Antennas Wirel Propag Lett 2013; 12: 987–990, 2013.
-
Khan O, Meyer J, Baur K, Waldschmidt C. Hybrid Thin Film Antenna for Automotive Radar at 79 GHz. IEEE Trans Antennas Propag 2017; 65(10): 5076–5085.
-
Saleem MK, Vettikaladi H, Alkanhal MAS, Himdi M. Lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications. IEEE Trans Antennas Propag 2017; 65(4): 2041–2046.
-
Alami WO, Sabir E, Brahim L. A H-slotted patch antenna array for 79 GHz automotive radar sensors. In: 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM); 16-19 October 2018; Marrakesh, Morocco: IEEE. pp. 1–6.
-
Arnieri E, Greco F, Boccia L, Amendola G. A reduced size planar grid array antenna for automotive radar sensors. IEEE Antennas Wirel. Propag. Lett. 2018; 17(12): 2389–2393.
-
Mosalanejad M, Ocket I, Soens C, Vandenbosch GAE. Multilayer compact grid antenna array for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2018; 17(9): 1677–1681.
-
Mosalanejad M, Ocket I, Soens C, Vandenbosch GAE. Wideband compact comb-line antenna array for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2018; 17(9): 1580–1583.
-
Tian J, Liu C, Gu X. Proximity‐coupled feed patch antenna array for 79 GHz automotive radar. J Eng 2019; 19: 6244–6246.
-
Yoo S, Milyakh Y, Kim H, Hong C, Choo H. Patch array antenna using a dual coupled feeding structure for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2020; 19(4): 676–679.
-
Mousavi SH, Pourzadi A, Nezhad-Ahmadi MR, Safavi-Naeini S. Wideband corporate center-fed antenna for 79GHz automotive radar application. In: 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM); 08-11 August 2021; Winnipeg, MB, Canada: IEEE. pp. 1–2.
-
Wang Z, Yi H, Xia D, Li L, Double-layer broadband and wide beam microstrip array antenna for 79GHz automotive radar. In: 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM); 23-26 May 2021; Nanjing, China: IEEE. pp. 1–3.
-
Aliakbari H, Mosalanejad M, Soens C, Vandenbosch GAE, Lau BK, 79 GHz multilayer series-fed patch antenna array with stacked micro-via loading. IEEE Antennas Wirel Propag Lett 2022; 21(10): 1990–1994.
-
Le TH, Kaiser M, Ndip M, Koeszegi JM, Thomas T, Nallaweg O, Dreissigacker M, Tschoban C, Schneider-Ramelow M. 3D mold embedded pcb-based mimo antenna arrays for 79 GHz automotive radar. In: 2023 20th european radar conference (EuRAD); 20-22 September 2023, Berlin, Germany: IEEE. pp. 2–5.
-
Su GR, Eric SL, Huayan J, Hsu PH, Sun JS, Chin KS. 79-GHz SIW slot-coupled patch antenna array with low cross polarization and wide beamwidth. J Electromagn Waves Appl 2023; 37(1): 38–52.
-
Sun J, Wu L, Li R, Zhang X, Cui Y. A wideband cavity-slotted waveguide antenna for mm-wave automotive radar sensors. IEEE Antennas Wirel Propag Lett 2024; 23(12): 4758–4762.
-
Sharma G, Kumar M. CPW-fed castle shaped dielectric resonator antenna for anticollision short range radar at 79 GHz. In 2024 Second International Conference on Microwave, Antenna and Communication (MAC); 04-06 October 2024, Dehradun, India: IEEE. pp. 1–4.
-
Lee JH, Lee JM, Seo DW. Design and evaluation of a sector beam antenna for 79-GHz short-range radar sensors. IEEE Access 2025; 13: 39087–39095.
-
Yan J, Wang H, Yin J, Yu C, Hong W. Planar series-fed antenna array for 77 GHz automotive radar. In: 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP); 16-19 October 2017, Xi’an, China: IEEE. pp. 1–3.
-
Hsu WT, Lin SL. Using FMCW in autonomous cars to accurately estimate the distance of the preceding vehicle. Int J Automot Technol 2022; 23(6): 1755–1762.
-
Pozar D. Surface wave effects for millimeter wave printed antennas. In: 1983 Antennas and Propagation Society International Symposium; 23-26 May 1983; Houston, TX, USA: IEEE. pp. 692–695.
-
Balanis CA. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2005.
-
Visser HJ. Array and Phased Array Antenna Basics. West Sussex, England: John Wiley & Sons, 2005.
-
Jian B, Yuan J, Liu Q. Procedure to design a series-fed microstrip patch antenna array for 77 GHz automotive radar. In: 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); 18-21 July 2019; Taiyuan, China: IEEE. pp. 1–2.
-
Lee JH, Lee JM, Hwang KC. Series feeding rectangular microstrip patch array antenna for 77 GHz automotive radar. In: 2017 International Symposium on Antennas and Propagation (ISAP); 30 October 2017 - 02 November 2017; Phuket, Thailand: IEEE. pp. 1–2.
-
Shang X, Ridler NM, Ding J, Geen M. Introductory guide to making planar S-parameter measurements at millimetre-wave frequencies. Accessed: Mar. 29, 2025. [Online]. Available: https://doi.org/10.47120/npl.9001
-
Dong Y, Johansen TK, Zhurbenko V. Ultra-wideband coplanar waveguide-to-asymmetric coplanar stripline transition from DC to 165 GHz. Int J Microw Wirel Technol 2018; 10(8): 870–876.
Feeding Analysis of a 79 GHz Phased Microstrip Antenna Array for Autonomous Vehicle Radar Applications
Year 2025,
Volume: 20 Issue: 2, 465 - 481
Selen Yılmaz
,
Yaser Dalveren
,
Ali Kara
Abstract
Automotive radar is known as a promising sensing technology in autonomous vehicles due to its reliability. In current autonomous vehicles, the 77 – 81 GHz frequency band is the principal operating band for automotive radars. For the efficient operation of automotive radars, the radar antenna needs to be highly accurate. However, higher operating frequencies may present challenges in radar antenna design, requiring high gain, wide bandwidth, and low sidelobe levels (SLL). To address this issue, this study aims to adapt a planar series-fed linear antenna array to 79 GHz automotive radar applications using three different grounded coplanar waveguide (GCPW) feed configurations, including coplanar gap source port, vertical ground bridge, and wave port. Simulations were conducted to evaluate the performance of the antenna with the feed configurations. According to the results, it was shown that the antenna with wave port feed achieved the best impedance bandwidth (>3 GHz), whereas the antenna with either the coplanar gap source port or the vertical ground bridge configurations exhibited better main lobe phase centering and a higher gain (>18.4 dBi), with an acceptable SLL below -16.28 dB. It is believed that these findings may contribute to the development of high-performance radar antennas for next-generation autonomous vehicles.
References
-
Global status report on road safety 2018. Accessed: Apr. 11, 2023. [Online]. Available: https://www.who.int/publications-detail-redirect/9789241565684
-
Derawi M, Dalveren Y, Cheikh FA. Internet-of-things-based smart transportation systems for safer roads. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT); 02-16 June 2020; New Orleans, LA, USA: IEEE. pp. 1–4.
-
Greenwood PM, Lenneman JK, Baldwin CL. Advanced driver assistance systems (ADAS): Demographics, preferred sources of information, and accuracy of ADAS knowledge. Transp Res Part F Traffic Psychol Behav 2022; 86: 131–150.
-
Yeong DJ, Velasco-Hernandez G, Barry J, Walsh J. Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors 2021; 21(6): 2140.
-
Wang C, Wang X, Hu H, Liang Y, Shen G. On the application of cameras used in autonomous vehicles. Arch Comput Methods Eng 2022; 29(6): 4319–4339.
-
Royo R, Ballesta-Garcia M, An overview of lidar imaging systems for autonomous vehicles. Appl Sci 2019; 9(19), 4093.
-
Bilik I, Longman O, Villeval S, Tabrikian J. The rise of radar for autonomous vehicles: Signal processing solutions and future research directions. IEEE Signal Process. Mag. 2019; 36(5): 20–31.
-
Bilik I, Comparative analysis of radar and lidar technologies for automotive applications. IEEE Intell Transp Syst Mag 2022; 15(1): 244–269.
-
Li L, Ibanez-Guzman J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process Mag 2020, 37(4): 50–61.
-
Patole SM, Torlak M, Wang D, Ali M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017; 34(2): 22–35.
-
Bilik I, Bialer O, Villeval S, Sharifi H, Kona K, Pan M, Persechini D, Musni M, Geary K. Automotive MIMO radar for urban environments. In: 2016 IEEE Radar Conference (RadarConf); 02-06 May 2016; Philadelphia, PA, USA: IEEE. pp. 1–6.
-
Isaacs O, Tabrikian J, Bilik I. Cognitive antenna selection for optimal source localization. In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP); 13-16 December 2015; Cancun, Mexico: IEEE. pp. 341–344.
-
Vargas J, Alsweiss S, Toker O, Razdan R, Santos J. An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors 2021; 21(16): 5397, 2021.
-
Wang X, Stelzer A, A 79-GHz LTCC patch array antenna using a laminated waveguide-based vertical parallel feed. IEEE Antennas Wirel Propag Lett 2013; 12: 987–990, 2013.
-
Khan O, Meyer J, Baur K, Waldschmidt C. Hybrid Thin Film Antenna for Automotive Radar at 79 GHz. IEEE Trans Antennas Propag 2017; 65(10): 5076–5085.
-
Saleem MK, Vettikaladi H, Alkanhal MAS, Himdi M. Lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications. IEEE Trans Antennas Propag 2017; 65(4): 2041–2046.
-
Alami WO, Sabir E, Brahim L. A H-slotted patch antenna array for 79 GHz automotive radar sensors. In: 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM); 16-19 October 2018; Marrakesh, Morocco: IEEE. pp. 1–6.
-
Arnieri E, Greco F, Boccia L, Amendola G. A reduced size planar grid array antenna for automotive radar sensors. IEEE Antennas Wirel. Propag. Lett. 2018; 17(12): 2389–2393.
-
Mosalanejad M, Ocket I, Soens C, Vandenbosch GAE. Multilayer compact grid antenna array for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2018; 17(9): 1677–1681.
-
Mosalanejad M, Ocket I, Soens C, Vandenbosch GAE. Wideband compact comb-line antenna array for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2018; 17(9): 1580–1583.
-
Tian J, Liu C, Gu X. Proximity‐coupled feed patch antenna array for 79 GHz automotive radar. J Eng 2019; 19: 6244–6246.
-
Yoo S, Milyakh Y, Kim H, Hong C, Choo H. Patch array antenna using a dual coupled feeding structure for 79 GHz automotive radar applications. IEEE Antennas Wirel Propag Lett 2020; 19(4): 676–679.
-
Mousavi SH, Pourzadi A, Nezhad-Ahmadi MR, Safavi-Naeini S. Wideband corporate center-fed antenna for 79GHz automotive radar application. In: 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM); 08-11 August 2021; Winnipeg, MB, Canada: IEEE. pp. 1–2.
-
Wang Z, Yi H, Xia D, Li L, Double-layer broadband and wide beam microstrip array antenna for 79GHz automotive radar. In: 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM); 23-26 May 2021; Nanjing, China: IEEE. pp. 1–3.
-
Aliakbari H, Mosalanejad M, Soens C, Vandenbosch GAE, Lau BK, 79 GHz multilayer series-fed patch antenna array with stacked micro-via loading. IEEE Antennas Wirel Propag Lett 2022; 21(10): 1990–1994.
-
Le TH, Kaiser M, Ndip M, Koeszegi JM, Thomas T, Nallaweg O, Dreissigacker M, Tschoban C, Schneider-Ramelow M. 3D mold embedded pcb-based mimo antenna arrays for 79 GHz automotive radar. In: 2023 20th european radar conference (EuRAD); 20-22 September 2023, Berlin, Germany: IEEE. pp. 2–5.
-
Su GR, Eric SL, Huayan J, Hsu PH, Sun JS, Chin KS. 79-GHz SIW slot-coupled patch antenna array with low cross polarization and wide beamwidth. J Electromagn Waves Appl 2023; 37(1): 38–52.
-
Sun J, Wu L, Li R, Zhang X, Cui Y. A wideband cavity-slotted waveguide antenna for mm-wave automotive radar sensors. IEEE Antennas Wirel Propag Lett 2024; 23(12): 4758–4762.
-
Sharma G, Kumar M. CPW-fed castle shaped dielectric resonator antenna for anticollision short range radar at 79 GHz. In 2024 Second International Conference on Microwave, Antenna and Communication (MAC); 04-06 October 2024, Dehradun, India: IEEE. pp. 1–4.
-
Lee JH, Lee JM, Seo DW. Design and evaluation of a sector beam antenna for 79-GHz short-range radar sensors. IEEE Access 2025; 13: 39087–39095.
-
Yan J, Wang H, Yin J, Yu C, Hong W. Planar series-fed antenna array for 77 GHz automotive radar. In: 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP); 16-19 October 2017, Xi’an, China: IEEE. pp. 1–3.
-
Hsu WT, Lin SL. Using FMCW in autonomous cars to accurately estimate the distance of the preceding vehicle. Int J Automot Technol 2022; 23(6): 1755–1762.
-
Pozar D. Surface wave effects for millimeter wave printed antennas. In: 1983 Antennas and Propagation Society International Symposium; 23-26 May 1983; Houston, TX, USA: IEEE. pp. 692–695.
-
Balanis CA. Antenna Theory: Analysis and Design. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2005.
-
Visser HJ. Array and Phased Array Antenna Basics. West Sussex, England: John Wiley & Sons, 2005.
-
Jian B, Yuan J, Liu Q. Procedure to design a series-fed microstrip patch antenna array for 77 GHz automotive radar. In: 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); 18-21 July 2019; Taiyuan, China: IEEE. pp. 1–2.
-
Lee JH, Lee JM, Hwang KC. Series feeding rectangular microstrip patch array antenna for 77 GHz automotive radar. In: 2017 International Symposium on Antennas and Propagation (ISAP); 30 October 2017 - 02 November 2017; Phuket, Thailand: IEEE. pp. 1–2.
-
Shang X, Ridler NM, Ding J, Geen M. Introductory guide to making planar S-parameter measurements at millimetre-wave frequencies. Accessed: Mar. 29, 2025. [Online]. Available: https://doi.org/10.47120/npl.9001
-
Dong Y, Johansen TK, Zhurbenko V. Ultra-wideband coplanar waveguide-to-asymmetric coplanar stripline transition from DC to 165 GHz. Int J Microw Wirel Technol 2018; 10(8): 870–876.