Research Article
BibTex RIS Cite

Eklemeli İmalat Tekniğiyle Üretilen AISi10Mg Alüminyum Alaşımlı Plakaların Özellikleri

Year 2025, Volume: 20 Issue: 2, 495 - 505
https://doi.org/10.55525/tjst.1720588

Abstract

Eklemeli imalat yöntemi ile üretilen AlSi10Mg alüminyum alaşımlı levhaların mikroyapı ve mekanik özellikleri ortaya çıkarıldı. Mikro yapının, sınırlarla ayrılmış kaynak havuzlarından oluştuğu açıkça gözlemlenmiştir. Ayrıca, mikro yapıda çapları 35 µm ile 5 µm arasında değişen az sayıda dağınık gözenek tespit edilmiştir. Birkaç küçük gözenek, iyi bir üretimin işaretidir. Üretilen AlSi10Mg alaşımının Vickers mikro sertliği ortalama 126,625 HV olarak ölçülmüştür. Ayrıca, çekme dayanımı ve üç noktalı eğilme dayanımı değerleri sırasıyla 433 MPa ve 548 MPa olarak bulunmuştur. Çekme kırılma yüzeyinde çok sayıda küçük ve derin çukur bulunurken, üç noktalı eğilme kırılma yüzeyinde de çukurlar bulunmaktaydı, ancak bu çukurlar çekme kırılmasına kıyasla daha büyük ve daha sığdı. Çekme ve üç nokta eğme testleri makul bir sünek kırılma davranışı göstermiştir.

References

  • You X, Xing Z, Jiang S, Zhu Y, Lin Y, Qiu H, Nie R, Yang J, Hui D, Chen W, Chen Y. A review of research on aluminum alloy materials in structural engineering. Dev Built Environ 2024; 17: 100319.
  • Hongfu Y, Rensong H, Yelin Z, Shanju Z, Mengnie L, Koppala S, Kemacheevakul P, Sannapaneni J. Effect of rolling deformation and passes on microstructure and mechanical properties of 7075 aluminum alloy. Ceram Int 2023; 49(1): 1165-1177.
  • Ye F, Mao L, Rong J, Zhang B, Wei L, Wen S, Jiao H, Wu S. Influence of different rolling processes on microstructure and strength of the Al-Cu-Li alloy AA2195. Prog Nat Sci-Mater 2022; 32(1): 87-95.
  • Chen Y, Wang L, Feng Z, Zhang W. Effects of heat treatment on microstructure and mechanical properties of SLMed Sc-modified AlSi10Mg alloy. Prog Nat Sci-Mater 2021; 31(5): 714-721.
  • Vidyasagar CHS, Karunakar D.B. Effect of spark plasma sintering and reinforcements on the formation of ultra-fine and nanograins in AA2024-TiB2-Y hybrid composites. Prog Nat Sci-Mater 2022; 32(1): 79-86.
  • Wen K, Li X, Xiong B, Lin H, Wen Q, Li Y, Yan H, Yan L, Zhang Y, Li Z, Liu H. Near-microscopic grain boundary facilitates fatigue crack propagation in a polycrystalline Al-Zn-Mg-Cu alloy. Prog Nat Sci-Mater 2023; 33(1): 120-125.
  • Kim DK, Hwang JH, Kim EY, Heo YU, Woo W, Choi S.H. Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. J Alloy Compd 2017; 714: 687-697.
  • Wang Z, Zhuo L, Yin E, Zhao Z. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys. Mat Sci Eng A 2021; 808: 140864.
  • Xue G, Ke L, Zhu H, Liao H, Zhu J, Zeng X. Influence of processing parameters on selectie laser melted SiC/AlSi10Mg composites: densification, microstructure and mechanical properties. Mat Sci Eng A 2019; 764: 138155.
  • Li Z, Li Z, Tan Z, Xiong DB, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plasticity 2020; 127: 102640.
  • Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM. Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater Design 2016; 105: 212-222.
  • Sames WJ, List FA, Pannala S, Dehoff RR, Babu S.S. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016; 61(5): 315-360.
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform 2014; 23: 1917-1928.
  • Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Tech 2016; 83: 389-405.
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 2016; 46: 151-186.
  • Chen B, Moon SK, Yao X, Bi G, Shen J, Umeda J, Kondoh K. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scripta Mater 2017; 141: 45-49.
  • Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing S.L. Review of selective laser melting: materials and applications. Appl Phys Rev 2015; 2(4): 041101.
  • Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 2019; 35(2): 270-284.
  • Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 2006; 46(12-13): 1459-1468.
  • Rombouts M, Kruth JP, Froyen L, Mercelis P. Fundamentals of selective laser melting of alloyed steel powders. Cirp Ann-Manuf Techn 2006; 55(1): 187-192.
  • Du Z, Tan MJ, Chen H, Bi G, Chua CK. Joining of 3D-printed AlSi10Mg by friction stir welding. Weld World 2018; 62(3): 675-682.
  • Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016; 117: 371-392.
  • DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W. Additive manufacturing of metallic components-Process, structure and properties. Prog Mater Sci 2018; 92: 112-224.
  • Dai S, Hu D, Grilli N, Zou S, Deng Z, Yan W. Anisotropic and high-temperature deformation behavior of additively manufactured AlSi10Mg: experiments and microscale modeling. Addit Manuf 2024; 89: 104285.
  • Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 2012; 39: 439-446.
  • Aktürk M, Korkmaz ME. A review on determination of material constitutive parameters of aluminum alloys produced by additive manufacturing method. MATECA 2021; 2(1): 49-60.
  • Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Design (1980-2015) 2015; 65: 417-424.
  • Alhammadi A, Al-Ketan O, Khan KA, Ali M, Rowshan R, Abu Al-Rub RK. Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials. Mat Sci Eng A 2020; 791: 139714.
  • Uzan NE, Shneck R, Yeheskel O, Frage N. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf 2018; 24: 257-263.
  • He P, Kong H, Liu Q, Ferry M, Kruzic JJ, Li X. Elevated temperature mechanical properties of TiCN reinforced AlSi10Mg fabricated by laser powder bed fusion additive manufacturing. Mat Sci Eng A 2021; 811: 141025.
  • Kartal F. Mechanical performance optimization in FFF 3D printing using Taguchi design and machine learning approach with PLA/walnut Shell composites filaments. J. Vinyl Addit. Technol. 2025; 31: 622-638.
  • Bakır M. 3-D Printed Dual-Band Frequency Selective Surfaces for Radome Applications. TJST 2023; 18(1): 169-176.
  • Akçay Ö, Arı A. Effect of infill density and infill pattern on mechanical properties of 3D-printed PLA produced by FFF. FÜMBD 2025; 37(1); 223-232.
  • Aslan İ, Can A. A review on the use of additive manufacturing technology in the railway industry. KSU J Eng Sci 2023; 26(4): 1078-1096.
  • Özer G. A review on additive manufacturing technologies. NOHU J Eng Sci 2020; 9(1): 606-621.
  • https://aludiecasting.com/tr/alsi10mg-dokum/ Access Date: 21.07.2025.
  • https://met3dp.com/tr/aluminum-alsi10mg-powder-a-technical-overview/ Access Date: 21.07.2025.
  • Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D. Evaluation of light weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Techn 2014; 214(4): 856-864.
  • Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mat Sci Eng A 2018; 712: 166-174.
  • Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 2017; 14: 39-48.
  • Wu Z, Wu S, Bao J, Qian W, Karabal S, Sun W, Withers PJ. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int J Fatigue 2021; 151: 106317.
  • Fritsche S, Draper J, Toumpis A, Galloway A, Amancio-Filho ST. Refill friction stir spot welding of AlSi10Mg alloy produced by laser powder bed fusion to wrought AA7075-T6 alloy. Manuf Lett 2022; 34: 78-81.
  • Wang Z, Xiao Z, Tse Y, Huang C, Zhang W. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol 2019; 112: 159-167.
  • Li C, Zhang WX, Yang HO, Wan J, Huang XX, Chen YZ. Microstructural origin of high strength and high strain hardening capability of a laser powder bed fused AlSi10Mg alloy. J Mater Res Technol 2024; 197: 194-206.
  • Chu F, Shen H, Liu J, Hou J, Zhang K, Zhou Z, Zhu Y, Wu X, Huang A. Improved ductility by reducing powder size in laser powder bed fusion of AlSi10Mg. Addit Manuf Front 2024; 3: 200122.
  • Atar B, Üyüklü E, Yayla P. Microstructure and mechanical properties of an additively manufactured AlSi10Mg based alloy. Mater Test 2023; 65(6): 874-885.
  • Gökdağ İ, Acar E. Effects of process parameters on strengthening mechanisms of additively manufactured AlSi10Mg. Mater Test 2023; 65(3): 409-422.
  • Li Y, Gu D, Zhang H, Xi L. Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy. Chin J Mech Eng 2020; 33: 33.

Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique

Year 2025, Volume: 20 Issue: 2, 495 - 505
https://doi.org/10.55525/tjst.1720588

Abstract

TThe microstructure and mechanical properties of AlSi10Mg aluminum alloy sheets produced by additive manufacturing method were revealed. It was clearly observed that the microstructure consisted of weld pools separated by boundaries. Furthermore, a small number of distributed pores with diameters ranging from 35 µm to 5 µm were detected in the microstructure. A few small-sized pores are a sign of good production. Vickers microhardness of the produced AlSi10Mg alloy was measured to be average 126.625 HV. Additionally, its tensile strength and three-point bending strength value were found to be 433 MPa and 548 MPa, respectively. The tensile fracture surface had many small and deep dimples while three-point bending fracture surface also possessed dimples, however, bigger and shallower compared with that of tensile fracture. Therefore, the tensile and three-point bending tests showed a reasonable ductile fracture behavior.

References

  • You X, Xing Z, Jiang S, Zhu Y, Lin Y, Qiu H, Nie R, Yang J, Hui D, Chen W, Chen Y. A review of research on aluminum alloy materials in structural engineering. Dev Built Environ 2024; 17: 100319.
  • Hongfu Y, Rensong H, Yelin Z, Shanju Z, Mengnie L, Koppala S, Kemacheevakul P, Sannapaneni J. Effect of rolling deformation and passes on microstructure and mechanical properties of 7075 aluminum alloy. Ceram Int 2023; 49(1): 1165-1177.
  • Ye F, Mao L, Rong J, Zhang B, Wei L, Wen S, Jiao H, Wu S. Influence of different rolling processes on microstructure and strength of the Al-Cu-Li alloy AA2195. Prog Nat Sci-Mater 2022; 32(1): 87-95.
  • Chen Y, Wang L, Feng Z, Zhang W. Effects of heat treatment on microstructure and mechanical properties of SLMed Sc-modified AlSi10Mg alloy. Prog Nat Sci-Mater 2021; 31(5): 714-721.
  • Vidyasagar CHS, Karunakar D.B. Effect of spark plasma sintering and reinforcements on the formation of ultra-fine and nanograins in AA2024-TiB2-Y hybrid composites. Prog Nat Sci-Mater 2022; 32(1): 79-86.
  • Wen K, Li X, Xiong B, Lin H, Wen Q, Li Y, Yan H, Yan L, Zhang Y, Li Z, Liu H. Near-microscopic grain boundary facilitates fatigue crack propagation in a polycrystalline Al-Zn-Mg-Cu alloy. Prog Nat Sci-Mater 2023; 33(1): 120-125.
  • Kim DK, Hwang JH, Kim EY, Heo YU, Woo W, Choi S.H. Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. J Alloy Compd 2017; 714: 687-697.
  • Wang Z, Zhuo L, Yin E, Zhao Z. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys. Mat Sci Eng A 2021; 808: 140864.
  • Xue G, Ke L, Zhu H, Liao H, Zhu J, Zeng X. Influence of processing parameters on selectie laser melted SiC/AlSi10Mg composites: densification, microstructure and mechanical properties. Mat Sci Eng A 2019; 764: 138155.
  • Li Z, Li Z, Tan Z, Xiong DB, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plasticity 2020; 127: 102640.
  • Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM. Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater Design 2016; 105: 212-222.
  • Sames WJ, List FA, Pannala S, Dehoff RR, Babu S.S. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016; 61(5): 315-360.
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform 2014; 23: 1917-1928.
  • Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Tech 2016; 83: 389-405.
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 2016; 46: 151-186.
  • Chen B, Moon SK, Yao X, Bi G, Shen J, Umeda J, Kondoh K. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scripta Mater 2017; 141: 45-49.
  • Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing S.L. Review of selective laser melting: materials and applications. Appl Phys Rev 2015; 2(4): 041101.
  • Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 2019; 35(2): 270-284.
  • Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf 2006; 46(12-13): 1459-1468.
  • Rombouts M, Kruth JP, Froyen L, Mercelis P. Fundamentals of selective laser melting of alloyed steel powders. Cirp Ann-Manuf Techn 2006; 55(1): 187-192.
  • Du Z, Tan MJ, Chen H, Bi G, Chua CK. Joining of 3D-printed AlSi10Mg by friction stir welding. Weld World 2018; 62(3): 675-682.
  • Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016; 117: 371-392.
  • DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W. Additive manufacturing of metallic components-Process, structure and properties. Prog Mater Sci 2018; 92: 112-224.
  • Dai S, Hu D, Grilli N, Zou S, Deng Z, Yan W. Anisotropic and high-temperature deformation behavior of additively manufactured AlSi10Mg: experiments and microscale modeling. Addit Manuf 2024; 89: 104285.
  • Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 2012; 39: 439-446.
  • Aktürk M, Korkmaz ME. A review on determination of material constitutive parameters of aluminum alloys produced by additive manufacturing method. MATECA 2021; 2(1): 49-60.
  • Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Design (1980-2015) 2015; 65: 417-424.
  • Alhammadi A, Al-Ketan O, Khan KA, Ali M, Rowshan R, Abu Al-Rub RK. Microstructural characterization and thermomechanical behavior of additively manufactured AlSi10Mg sheet cellular materials. Mat Sci Eng A 2020; 791: 139714.
  • Uzan NE, Shneck R, Yeheskel O, Frage N. High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Addit Manuf 2018; 24: 257-263.
  • He P, Kong H, Liu Q, Ferry M, Kruzic JJ, Li X. Elevated temperature mechanical properties of TiCN reinforced AlSi10Mg fabricated by laser powder bed fusion additive manufacturing. Mat Sci Eng A 2021; 811: 141025.
  • Kartal F. Mechanical performance optimization in FFF 3D printing using Taguchi design and machine learning approach with PLA/walnut Shell composites filaments. J. Vinyl Addit. Technol. 2025; 31: 622-638.
  • Bakır M. 3-D Printed Dual-Band Frequency Selective Surfaces for Radome Applications. TJST 2023; 18(1): 169-176.
  • Akçay Ö, Arı A. Effect of infill density and infill pattern on mechanical properties of 3D-printed PLA produced by FFF. FÜMBD 2025; 37(1); 223-232.
  • Aslan İ, Can A. A review on the use of additive manufacturing technology in the railway industry. KSU J Eng Sci 2023; 26(4): 1078-1096.
  • Özer G. A review on additive manufacturing technologies. NOHU J Eng Sci 2020; 9(1): 606-621.
  • https://aludiecasting.com/tr/alsi10mg-dokum/ Access Date: 21.07.2025.
  • https://met3dp.com/tr/aluminum-alsi10mg-powder-a-technical-overview/ Access Date: 21.07.2025.
  • Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D. Evaluation of light weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Techn 2014; 214(4): 856-864.
  • Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mat Sci Eng A 2018; 712: 166-174.
  • Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 2017; 14: 39-48.
  • Wu Z, Wu S, Bao J, Qian W, Karabal S, Sun W, Withers PJ. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int J Fatigue 2021; 151: 106317.
  • Fritsche S, Draper J, Toumpis A, Galloway A, Amancio-Filho ST. Refill friction stir spot welding of AlSi10Mg alloy produced by laser powder bed fusion to wrought AA7075-T6 alloy. Manuf Lett 2022; 34: 78-81.
  • Wang Z, Xiao Z, Tse Y, Huang C, Zhang W. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol 2019; 112: 159-167.
  • Li C, Zhang WX, Yang HO, Wan J, Huang XX, Chen YZ. Microstructural origin of high strength and high strain hardening capability of a laser powder bed fused AlSi10Mg alloy. J Mater Res Technol 2024; 197: 194-206.
  • Chu F, Shen H, Liu J, Hou J, Zhang K, Zhou Z, Zhu Y, Wu X, Huang A. Improved ductility by reducing powder size in laser powder bed fusion of AlSi10Mg. Addit Manuf Front 2024; 3: 200122.
  • Atar B, Üyüklü E, Yayla P. Microstructure and mechanical properties of an additively manufactured AlSi10Mg based alloy. Mater Test 2023; 65(6): 874-885.
  • Gökdağ İ, Acar E. Effects of process parameters on strengthening mechanisms of additively manufactured AlSi10Mg. Mater Test 2023; 65(3): 409-422.
  • Li Y, Gu D, Zhang H, Xi L. Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy. Chin J Mech Eng 2020; 33: 33.
There are 48 citations in total.

Details

Primary Language English
Subjects Material Characterization, Additive Manufacturing
Journal Section TJST
Authors

Mehmet Yaz 0000-0002-5422-7433

Ömer Ekinci 0000-0002-0179-6456

Zülküf Balalan 0000-0001-5808-6263

Özgür Özgün 0000-0003-3816-6746

Publication Date September 25, 2025
Submission Date June 17, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

APA Yaz, M., Ekinci, Ö., Balalan, Z., Özgün, Ö. (n.d.). Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique. Turkish Journal of Science and Technology, 20(2), 495-505. https://doi.org/10.55525/tjst.1720588
AMA Yaz M, Ekinci Ö, Balalan Z, Özgün Ö. Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique. TJST. 20(2):495-505. doi:10.55525/tjst.1720588
Chicago Yaz, Mehmet, Ömer Ekinci, Zülküf Balalan, and Özgür Özgün. “Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique”. Turkish Journal of Science and Technology 20, no. 2 n.d.: 495-505. https://doi.org/10.55525/tjst.1720588.
EndNote Yaz M, Ekinci Ö, Balalan Z, Özgün Ö Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique. Turkish Journal of Science and Technology 20 2 495–505.
IEEE M. Yaz, Ö. Ekinci, Z. Balalan, and Ö. Özgün, “Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique”, TJST, vol. 20, no. 2, pp. 495–505, doi: 10.55525/tjst.1720588.
ISNAD Yaz, Mehmet et al. “Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique”. Turkish Journal of Science and Technology 20/2 (n.d.), 495-505. https://doi.org/10.55525/tjst.1720588.
JAMA Yaz M, Ekinci Ö, Balalan Z, Özgün Ö. Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique. TJST.;20:495–505.
MLA Yaz, Mehmet et al. “Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique”. Turkish Journal of Science and Technology, vol. 20, no. 2, pp. 495-0, doi:10.55525/tjst.1720588.
Vancouver Yaz M, Ekinci Ö, Balalan Z, Özgün Ö. Characteristics of AISi10Mg Aluminum Alloy Plates Produced Through Additive Manufacturing Technique. TJST. 20(2):495-50.