Review
BibTex RIS Cite

Biyolojik Mücadelenin Yeni Yüzü: Biyoherbisitler

Year 2022, Volume: 25 Issue: 2, 151 - 160, 31.12.2022

Abstract

Sürdürülebilir yabancı ot yönetimi, hem organik hem de konvansiyonel tarım alanlarının en büyük zorluklarından biridir. Günümüzde yabancı ot mücadelesi için en çok tercih edilen yöntem kimyasal mücadele olup, sürekli herbisit kullanımı sonucunda; dayanıklılık, çevresel kirlilik, kalıntı gibi birçok sorunu da ortaya çıkartmaktadır. Bu nedenle de biyolojik preparatların ağırlıklı olarak kullanıldığı organik tarıma ve iyi tarım uygulamalarına olan ilgi sürekli artmaktadır. Sertifikalı organik tarım ve geleneksel tarımın sürdürülebilirliğini sağlamak için herbisitler dışında başka ürünlere de ihtiyaç vardır. Biyoherbisitler, sentetik herbisitlere olan bağımlılığı azaltmada ve tarımsal çevreyi korumada uygun alternatifler arasındadır. Bu ürünler, entegre yabancı ot mücadelesi içerisinde biyolojik mücadelenin bir parçasıdır.
Sentetik herbisit kullanımına alternatif olarak üretilmeye çalışılan biyoherbisitler ne yazık ki istenilen düzeyde ticarileştirilmemiştir. Yabancı otların biyolojik mücadele etmenleri ile kontrolü üzerine uzun süren araştırmalar yapılsa da piyasaya ancak birkaç biyoherbisit sürülebilmiştir. Biyoherbisitlerin ticarileştirilmesinin ve kullanımının önündeki engeller; elde edilen ürünün etki spektrumunun sadece birkaç yabancı ot ile sınırlı olması, inkubasyon için nemin yeterli sürede birçok alanda sağlanamaması, yüksek uygulama normlarına ihtiyaç duyulması, raf ömrünün çok uzun olmaması, fungusit uygulamalarının biyolojik preparatların aktivitesini düşürmesi olarak sıralanabilir. Bu çalışmada biyoherbisitlerin üretim süreçleri, etkinliği ve potansiyeli değerlendirilmektedir. Ülkemiz bitki, böcek ve mikroorganizma biyoçeşitliliği bakımından büyük bir potansiyeli barındırdığı için biyoherbisitlerin keşfedilmesi ve ticarileştirilmesi konusunda büyük imkana da sahiptir. 

References

  • Alharits L, Hemelda NM, Yasman, Handayani W. (2020). Allelopathic activity of Dendrophthoe pentandra as a potential bioherbicide to inhibit seed germination and seedling growth of Eleusine indica. Nusantara Bioscience 12: 33-39.
  • Asav, Ü., Serim. A.T. (2018). Vejetatif filtre şeritleri: Herbisitlerin yüzey sürüklenmesi yoluyla taşınması-nın engellenmesinde çevreci bir yaklaşım. Selçuk Tarım ve Gıda Bilimleri Dergisi, 32 (3): 587-593.
  • Bailey K.L., Pitt W. M., Derby J.A., (2010). Efficacy of Phoma macrostoma, a Bioherbicide, for Control of Dandelion (Taraxacum officinale) Following Simulated Rainfall Conditions. The Americas Journal of Plant Science and Biotechnology 4 (Special Issue 2), 35-42
  • Bailey, K.L., (2013).The Bioherbicide Approach to Weed Control Using Plant Pathogens. Integrated Pest Management, Academic press, ISBN: 978-0-12-398529-3, 245-266.
  • Boyette, C. D., and Abbas, H. K. (1994). Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci. 42:487-491.
  • Boyette, C. D., Bryson, C. T., Hoagland, R. E. (2011). Biological control of Cucurbita pepo var. texana (Texas Gourd) in Cotton (Gossypium hirsutum) with the Fungus Fusarium solani f.sp. cucurbitae. Pest Technology, 5, 97-101.
  • Boyette, C. D., Quimby, P. C., JR., Bryson, C. T., Egley, G. H., and Fulgham, F. E. (1993). Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci. 41:497-500.
  • Boyette, C. D., Quimby, P. C., Jr., Caesar, A. J., Birdsall, J. L., Connick, W. J., Jr., Daigle, D. J., Jackson, M. A., Egley, G. H., and Abbas, H. K. (1996). Adjuvants, formulations, and spraying systems for improvement of mycoherbicides. Weed Technol. 10:637-644.
  • Cai, X., Gu, M. (2016). Bioherbicides in Organic Horticulture. 2(2), 3; https://doi.org/10.3390/horticulturae2020003
  • Charudattan, R. (2001). Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agro-ecology. BioControl 46: 229–260.
  • Charudattan R., (2010). A Reflection on My Research in Weed Biological Control: Using What We Have Learned for Future Applications. Weed Technology. Vol. 24, No. 2, pp.208-217.
  • Charudattan, R., Pettersen, M. S., and Hiebert, E. (2004). Use of Tobacco mild green mosaic virüs (TMGMV)-mediated lethal hypersensitive response (HR) as a novel method of weed control. U.S. Patent No. 6,689,718 B2. February 10, 2004.
  • Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection Volume 87, Pages 44-49.
  • Groves, R. H., and Williams, J. D. (1975). Growth of skeleton weed (Chondrillina juncea L.) as affected by the growth of subterranean clover (Trifolium subterranean L.) and infection by Puccinia chondrillina Bubak and Syd. Aust. J. Agric. Res. 26:975-983.
  • Harding, D.P., Raizada, M.N. (2015). Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science 6: 659. http://dx.doi.org/10.3389/fpls.2015.00659
  • Hasan, M., Ahmad-Hamdani, M.S., Rosli, A.M., Hamdan, H. (2021a). Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants (Basel) 10(6):1212. doi: 10.3390/plants10061212
  • Hasan M., Mokhtar A.S., Rosli A. M., Hamdan H., Motmainna M., Ahmad-Hamdani M.S. (2021b). Weed Control Efficacy and Crop-Weed Selectivity of a New Bioherbicide WeedLock. https://doi.org/10.3390/agronomy11081488
  • Hoagland, R. E. (1990). Alternaria cassiae alters phenylpropanoid metabolism in sicklepod (Cassia obtusifolia). Phytopathology 130:177-187.
  • Hoagland, R. E. (1996). Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 10:651-673.
  • Kremer R. J., (2005). The Role of Bioherbicides in Weed Management. Biopesticides International 1(3, 4):127-141
  • Marley, P. S., ABA, D. A., Shebayan, J. A. Y., Musa, R., and Sanni, A. (2004). Integrated management of Striga hermonthica in sorghum using a mycoherbicide and host plant resistance in the nigerian sudano-sahelian savanna. Weed Res. 44:157-162.
  • Markle, D. M., and Lym, R. G. (2001). Leafy spurge (Euphorbia esula) control and herbage production with imazapic. Weed Technol. 15:474-480.
  • Mathur, M., Gehlot, P., (2018). Recruit the Plant Pathogen for Weed Management: Bioherbicide – A Sustainable Strategy. In book: Fungi and their Role in Sustainable Development: Current Perspectives Pages 159-181).
  • Pacanoski, Z. (2015). Bioherbicides. In Herbicides, Physiology of Action, and Safety. IntechOpen. DOI: 10.5772/61528.
  • Peng, G., and Byer, K. N. (2005). Interactions of Pyricularia setariae with herbicides for control of green foxtail (Setaria viridis). Weed technol. 19:589-598.
  • Peng, G., Wolf, T.M. (2008). Spray retention and its potential impact on bioherbicide efficacy. Pest technolohy, 2(2): 70-80.
  • Peng, G., and Wolf TM. (2011). Herbicide-microbial synergy for improved weed control. Pest Technol. 5(Special Edit.):18-27.
  • Pitelli, R. A., Charudattan, R., and DeValerio, J. T.,(1998). Effect of Alternaria cassiae, Pseudocercospora nigricans, and soybean (Glycine max) planting density on the biological control of sicklepod (Senna obtusifolia). Weed Technol. 12:37-40.
  • Ray, P., and Vijayachandran L. S. (2013). Evaluation of Indigenous Fungal Pathogens from Horse Purslane (Trianthema portulacastrum) for Their Relative Virulence and Host Range Assessments to Select a Potential Mycoherbicidal Agent Weed Science. 61:580–585
  • Rayamajhi, M. B., Van, T. K., Pratt, P. D., and Center, T. D. (2006). Interactive association between Puccinia psidii and Oxyops vitiosa, two introduced natural enemies of Melaleuca quinquenerviain Florida. Biol. Control 37:56-67.
  • Serim, A.T., Güzel, N.P., Türktemel, İ., (2015). Allelopatik bitki ekstraktları ile herbisitlerin beraber kullanımı. Derim, 32 (2): 225-236.
  • Sharon, A., Amsellem, Z., and Gressel, J., (1992). Glyphosate suppression of an elicited defense response: Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiology 98:654-659.
  • Walter, S., Taylor W., Falk S.P., J., Pető, K., Nagy, J. (2013). Pesticide productivity and food security. A review. Agron. Sustain. Dev., 33: 243–255.
  • Walker, H. L., and Tilley, A. M. (1997). Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide. Biol. Control 10:104-111.
  • Vurro, M., Boari, A., Pilgeram, A. L., and Sands, D. C. (2006). Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (Broomrape): Potential application for management of parasitic weeds. Biol. Control 36:258-265.
  • Yandoc-Ables, C. B., Rosskopf E. N., Charudattan, R., (2006). Plant Pathogens at Work: Progress and Possibilities for Weed Biocontrol Part 2: Improving Weed Control Efficacy. https://www.apsnet.org/edcenter/apsnetfeatures/Pages/WeedBiocontrolPart1.aspx
  • Yandoc C. B., Charudattan R., Shilling D., (2009). Suppression of cogongrass (Imperata cylindrica) by a bioherbicidal fungus and plant competition. Weed Science 52(Jul 2004):649-653
  • Zidack, N. K., Tiourabaev, K., Pilgeram, A. L., Jacobsen, B. J., and Sands, D. C. (2001). Valine excreting isolate of Pseudomonas syringae pv. tagetis exhibits enhanced virulence against houndstongue (Cynoglossum officinale). Phytopathology 91:S100.

The New Face of Biological Control: Bioherbicide

Year 2022, Volume: 25 Issue: 2, 151 - 160, 31.12.2022

Abstract

Sustainable weed management is one of the most troublesome issues in organic and conventional crop production. Herbicide use is the most common weed control practice nowadays. Using them without a rotation results in some problems such as herbicide resistance, environmental pollution, and residue. Therefore, the interest in organic farming and good farming is getting more and more because biological products have been heavily used in these fields. To provide sustainability for these farming systems, there is need for more products except herbicides. Bioherbicides are among the appropriate alternatives to reduce dependency to the synthetic herbicides and protect agro-environment. These products are part of biological control in the Integrated Weed Management concept.
The bioherbicides that have been produced as an alternative to synthetic herbicides were not commercialized as much as desired. Although the research about the biological control of the weeds has been conducted for many years, there were only a few bioherbicides in the market. The restrictions that caused commercialization and use of these products were their efficacy spectrum only limited to a few weeds, the moisture required for incubation couldn’t be provided in many fields, they need high application volume, they have not so long shelf life, the fungicide applications may reduce the activity of biological products. In the study, the production process, efficacy, and potency of bioherbicides were discussed. Turkey has a big opportunity to discover and commercialize these products because it has tremendous potential in terms of plant, insect and microorganism biodiversity.  

References

  • Alharits L, Hemelda NM, Yasman, Handayani W. (2020). Allelopathic activity of Dendrophthoe pentandra as a potential bioherbicide to inhibit seed germination and seedling growth of Eleusine indica. Nusantara Bioscience 12: 33-39.
  • Asav, Ü., Serim. A.T. (2018). Vejetatif filtre şeritleri: Herbisitlerin yüzey sürüklenmesi yoluyla taşınması-nın engellenmesinde çevreci bir yaklaşım. Selçuk Tarım ve Gıda Bilimleri Dergisi, 32 (3): 587-593.
  • Bailey K.L., Pitt W. M., Derby J.A., (2010). Efficacy of Phoma macrostoma, a Bioherbicide, for Control of Dandelion (Taraxacum officinale) Following Simulated Rainfall Conditions. The Americas Journal of Plant Science and Biotechnology 4 (Special Issue 2), 35-42
  • Bailey, K.L., (2013).The Bioherbicide Approach to Weed Control Using Plant Pathogens. Integrated Pest Management, Academic press, ISBN: 978-0-12-398529-3, 245-266.
  • Boyette, C. D., and Abbas, H. K. (1994). Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci. 42:487-491.
  • Boyette, C. D., Bryson, C. T., Hoagland, R. E. (2011). Biological control of Cucurbita pepo var. texana (Texas Gourd) in Cotton (Gossypium hirsutum) with the Fungus Fusarium solani f.sp. cucurbitae. Pest Technology, 5, 97-101.
  • Boyette, C. D., Quimby, P. C., JR., Bryson, C. T., Egley, G. H., and Fulgham, F. E. (1993). Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion. Weed Sci. 41:497-500.
  • Boyette, C. D., Quimby, P. C., Jr., Caesar, A. J., Birdsall, J. L., Connick, W. J., Jr., Daigle, D. J., Jackson, M. A., Egley, G. H., and Abbas, H. K. (1996). Adjuvants, formulations, and spraying systems for improvement of mycoherbicides. Weed Technol. 10:637-644.
  • Cai, X., Gu, M. (2016). Bioherbicides in Organic Horticulture. 2(2), 3; https://doi.org/10.3390/horticulturae2020003
  • Charudattan, R. (2001). Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agro-ecology. BioControl 46: 229–260.
  • Charudattan R., (2010). A Reflection on My Research in Weed Biological Control: Using What We Have Learned for Future Applications. Weed Technology. Vol. 24, No. 2, pp.208-217.
  • Charudattan, R., Pettersen, M. S., and Hiebert, E. (2004). Use of Tobacco mild green mosaic virüs (TMGMV)-mediated lethal hypersensitive response (HR) as a novel method of weed control. U.S. Patent No. 6,689,718 B2. February 10, 2004.
  • Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection Volume 87, Pages 44-49.
  • Groves, R. H., and Williams, J. D. (1975). Growth of skeleton weed (Chondrillina juncea L.) as affected by the growth of subterranean clover (Trifolium subterranean L.) and infection by Puccinia chondrillina Bubak and Syd. Aust. J. Agric. Res. 26:975-983.
  • Harding, D.P., Raizada, M.N. (2015). Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science 6: 659. http://dx.doi.org/10.3389/fpls.2015.00659
  • Hasan, M., Ahmad-Hamdani, M.S., Rosli, A.M., Hamdan, H. (2021a). Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants (Basel) 10(6):1212. doi: 10.3390/plants10061212
  • Hasan M., Mokhtar A.S., Rosli A. M., Hamdan H., Motmainna M., Ahmad-Hamdani M.S. (2021b). Weed Control Efficacy and Crop-Weed Selectivity of a New Bioherbicide WeedLock. https://doi.org/10.3390/agronomy11081488
  • Hoagland, R. E. (1990). Alternaria cassiae alters phenylpropanoid metabolism in sicklepod (Cassia obtusifolia). Phytopathology 130:177-187.
  • Hoagland, R. E. (1996). Chemical interactions with bioherbicides to improve efficacy. Weed Technol. 10:651-673.
  • Kremer R. J., (2005). The Role of Bioherbicides in Weed Management. Biopesticides International 1(3, 4):127-141
  • Marley, P. S., ABA, D. A., Shebayan, J. A. Y., Musa, R., and Sanni, A. (2004). Integrated management of Striga hermonthica in sorghum using a mycoherbicide and host plant resistance in the nigerian sudano-sahelian savanna. Weed Res. 44:157-162.
  • Markle, D. M., and Lym, R. G. (2001). Leafy spurge (Euphorbia esula) control and herbage production with imazapic. Weed Technol. 15:474-480.
  • Mathur, M., Gehlot, P., (2018). Recruit the Plant Pathogen for Weed Management: Bioherbicide – A Sustainable Strategy. In book: Fungi and their Role in Sustainable Development: Current Perspectives Pages 159-181).
  • Pacanoski, Z. (2015). Bioherbicides. In Herbicides, Physiology of Action, and Safety. IntechOpen. DOI: 10.5772/61528.
  • Peng, G., and Byer, K. N. (2005). Interactions of Pyricularia setariae with herbicides for control of green foxtail (Setaria viridis). Weed technol. 19:589-598.
  • Peng, G., Wolf, T.M. (2008). Spray retention and its potential impact on bioherbicide efficacy. Pest technolohy, 2(2): 70-80.
  • Peng, G., and Wolf TM. (2011). Herbicide-microbial synergy for improved weed control. Pest Technol. 5(Special Edit.):18-27.
  • Pitelli, R. A., Charudattan, R., and DeValerio, J. T.,(1998). Effect of Alternaria cassiae, Pseudocercospora nigricans, and soybean (Glycine max) planting density on the biological control of sicklepod (Senna obtusifolia). Weed Technol. 12:37-40.
  • Ray, P., and Vijayachandran L. S. (2013). Evaluation of Indigenous Fungal Pathogens from Horse Purslane (Trianthema portulacastrum) for Their Relative Virulence and Host Range Assessments to Select a Potential Mycoherbicidal Agent Weed Science. 61:580–585
  • Rayamajhi, M. B., Van, T. K., Pratt, P. D., and Center, T. D. (2006). Interactive association between Puccinia psidii and Oxyops vitiosa, two introduced natural enemies of Melaleuca quinquenerviain Florida. Biol. Control 37:56-67.
  • Serim, A.T., Güzel, N.P., Türktemel, İ., (2015). Allelopatik bitki ekstraktları ile herbisitlerin beraber kullanımı. Derim, 32 (2): 225-236.
  • Sharon, A., Amsellem, Z., and Gressel, J., (1992). Glyphosate suppression of an elicited defense response: Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiology 98:654-659.
  • Walter, S., Taylor W., Falk S.P., J., Pető, K., Nagy, J. (2013). Pesticide productivity and food security. A review. Agron. Sustain. Dev., 33: 243–255.
  • Walker, H. L., and Tilley, A. M. (1997). Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide. Biol. Control 10:104-111.
  • Vurro, M., Boari, A., Pilgeram, A. L., and Sands, D. C. (2006). Exogenous amino acids inhibit seed germination and tubercle formation by Orobanche ramosa (Broomrape): Potential application for management of parasitic weeds. Biol. Control 36:258-265.
  • Yandoc-Ables, C. B., Rosskopf E. N., Charudattan, R., (2006). Plant Pathogens at Work: Progress and Possibilities for Weed Biocontrol Part 2: Improving Weed Control Efficacy. https://www.apsnet.org/edcenter/apsnetfeatures/Pages/WeedBiocontrolPart1.aspx
  • Yandoc C. B., Charudattan R., Shilling D., (2009). Suppression of cogongrass (Imperata cylindrica) by a bioherbicidal fungus and plant competition. Weed Science 52(Jul 2004):649-653
  • Zidack, N. K., Tiourabaev, K., Pilgeram, A. L., Jacobsen, B. J., and Sands, D. C. (2001). Valine excreting isolate of Pseudomonas syringae pv. tagetis exhibits enhanced virulence against houndstongue (Cynoglossum officinale). Phytopathology 91:S100.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Review
Authors

İstem Budak 0000-0002-9153-0386

Doğan Işık 0000-0002-0554-2912

Publication Date December 31, 2022
Acceptance Date December 15, 2022
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Budak, İ., & Işık, D. (2022). Biyolojik Mücadelenin Yeni Yüzü: Biyoherbisitler. Turkish Journal of Weed Science, 25(2), 151-160.

indeks_15c38e2bdcc1ed.jpg