Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer

Year 2022, Volume 6, Issue 1, 145 - 176, 13.01.2022
https://doi.org/10.31807/tjwsm.947685

Abstract

In this study, we examined the potential impact of climate change on the depletion of groundwater levels and storage. To achieve so, we simulated the groundwater flow using the HİDROTÜRK hydrogeological model under the climate change projections considering the RCP4.5 and RCP8.5 scenarios. To estimate the model forcing input (recharge and evapotranspiration) for the hydrogeological model, we used precipitation and temperature outputs from two Global Circulation Models, namely HadGEM2-ES and MPI-ESM-MR. To assess the changes in groundwater level and storage, we applied our experimental design in the Şuhut alluvial aquifer in Akarçay Basin (Turkey). The study revealed that there is not necessarily a substantial difference tracked over the estimated groundwater levels between the RCP4.5 and RCP8.5 scenarios until the end of 2050s. Yet, a significant reduction in the hydraulic head (approximately 114 m) and storage change (-17.25 %) – particularly in the western part of the aquifer – is expected in 2100, according to RCP8.5. This study confirmed that the selected climate model not only leads to the different predictions in the groundwater depletion, yet also results in a different degree of confidence in the model simulations.

References

  • Bakker, M., Post, V. +., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., & Fienen, M. N. (2016). Scripting MODFLOW model development using Python and FloPy. Groundwater, 54(5), 733-739. https://doi.org/10.1111/gwat.12413
  • Bovolo, C. I., Parkin, G., & Sophocleous, M. (2009). Groundwater resources, climate and vulnerability. Environmental Research Letters, 4(3), 035001. http://dx.doi.org/10.1088/1748- 9326/4/3/035001
  • Cramer, W., Guiot, J., & Marini, K. (2018). MedECC report: Risks associated to climate and environmental changes in the mediterranean region.
  • Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., & Woodward, S. (2011). Development and evaluation of an Earth- System model–HadGEM2. Geoscientific Model Development, 4(4), 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., & Coşkun, M. (2017). Climate change projections for Turkey: Three models and two scenarios. Türkiye Su Bilimleri ve Yönetimi Dergisi, 1(1), 22-43. https://doi.org/10.31807/tjwsm.297183
  • Devlet Su İsleri Genel Müdürlüğü. (2013). Afyon Akarçay Havzası Yeraltısuyu Planlama (Hidrojeolojik Etüt) Raporu.
  • Dettinger, M. D., & Earman, S. (2007). Western ground water and climate change—pivotal to supply sustainability or vulnerable in its own right?. Ground Water Scientists and Engineers Newsletter, 4-5.
  • Dişli, E. (2005), Evrik modelleme tekniğinin yeraltı suyu akım modellerinde kullanılması: AfyonŞuhut Ovası. Yerbilimleri, 26(2), 33-47. https://dergipark.org.tr/tr/pub/yerbilimleri/issue/13628/165117
  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed.). New York: Wiley.
  • Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006
  • Döll, P., & Flörke, M. (2005). Frankfurt Hydrology Paper 03: Global-Scale Estimation of Diffuse Groundwater Recharge. Institute of Physical Geography, Frankfurt University. https://www.unifrankfurt. de/45217767/FHP_03_Doell_Floerke_2005.pdf
  • Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: a short review. Geological Society, London, Special Publications, 288(1), 1-12. https://doi.org/10.1144/SP288.1
  • Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources– a global review. Journal of Water and Climate Change, 2(4), 213-229. https://doi.org/10.2166/wcc.2011.034
  • Her, Y., Yoo, S. H., Seong, C., Jeong, J., Cho, J., & Hwang, S. (2016). Comparison of uncertainty in multi-parameter and multi-model ensemble hydrologic analysis of climate change. Hydrology and Earth System Sciences Discussions, 1-44. https://doi.org/10.5194/hess-2016-160
  • Fajardo, J., Corcoran, D., Roehrdanz, P. R., Hannah, L., & Marquet, P. A. (2020). GCM compareR: A web application to assess differences and assist in the selection of general circulation models for climate change research. Methods in Ecology and Evolution, 11(5), 656-663. https://doi.org/10.1111/2041-210X.13360\
  • General Directorate of Water Management. (2015a). An Akarçay Basin drought management plan.
  • General Directorate of Water Management. (2015b). Akarçay Havzası kuraklık yönetim planı.
  • General Directorate of Water Management. (2016). İklim değişikliğinin su kaynaklarına etkisi projesi proje nihai raporu.
  • General Directorate of Water Management. (2017). Akarçay Havzası sektörel su tahsis planının hazırlanması projesi.
  • General Directorate of Water Management. (2020a). 3 Pilot havzada nehir havza yönetim planları kapsamında ekonomik analizler ve su verimliliği çalışmaları için teknik destek projesi- Akarçay Havzası yönetim planı stratejik çevresel değerlendirme taslak raporu.
  • General Directorate of Water Management. (2020b). Su kaynaklarının sürdürülebilir yönetimi için ülkemize özgü hidroloji, su kalitesi ve ekolojisi modelleme araçlarının geliştirilmesi projesi HİDROTÜRK.
  • Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H. D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U... Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI‐ ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572-597. https://doi.org/10.1002/jame.20038
  • Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. https://doi:10.1016/j.jhydrol.2011.05.002
  • Gülenbay, A., Boydaş, T., Giritlioğlu, T., Sözen, M. (1971). Afyon – Şuhut Ovası Hidrojeolojik Etüdü. DSİ, Ankara.
  • Gürkan, H., Demir, Ö., Atay, H., Eskioğlu, O., Yazıcı, B., Demircan, M., Kocatürk, A., & Akçakaya, A. (2015). VII. Uluslararası Katılımlı Atmosfer Bilimleri Sempozyumu: MPI-ESM-MRModelinin RCP4. 5 ve RCP8. 5 Senaryolarına Göre Sıcaklık ve Yağış Projeksiyonları. İstanbul Teknik Üniversitesi. https://www.mgm.gov.tr/FILES/iklim/yayinlar/2015/1.pdf
  • Harbaugh, A. W., & McDonald, M. G. (1996). Programmer's documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model (No. 96-486). US Geological Survey.
  • Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (pp. 6-A16). Reston, VA: US Department of the Interior, US Geological Survey.
  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology journal, 10(1), 91-109. https://doi.org/10.1007/s10040-001-0178-0
  • Holman, I. P. (2006). Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeology journal, 14(5), 637-647. https://doi.org/10.1007/s10040- 005-0467-0
  • International Panel on Climate Change. (2007). Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  • International Panel on Climate Change. (2014). Climate Change: Impacts, adaptation, and vulnerability. part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Jones, C., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, J. R., Bell, C., Boo, O. K., Bozzo, A., Butchart, N., Cadule, P., Corbin, D. K., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L... & Zerroukat, M. (2011). The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4(3), 543-570. https://doi.org/10.5194/gmd-4-543-2011
  • Kaczmarska, J., Jewson, S., & Bellone, E. (2018). Quantifying the sources of simulation uncertainty in natural catastrophe models. Stochastic environmental research and risk assessment, 32(3), 591- 605. https://doi.org/10.1007/s00477-017-1393-0
  • Kale, M. M. (2021). Akarçay Kapalı Havzası için hidrolojik kuraklık analizi. Coğrafya Dergisi, (42), 165-180. https://dergipark.org.tr/en/pub/iucografya/issue/63677/892360
  • Kattenberg, A. (1996). Climate models: projections of future climate (No. CONF-960146-). American Meteorological Society, Boston, MA (United States).
  • Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Scen & I.A. Shiklomanov, (2007): Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter3-1.pdf (last accessed 3 December 2021).
  • Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change?. Hydrological sciences journal, 54(4), 665-675. https://doi.org/10.1623/hysj.54.4.665
  • Kuran, I. H. (1958). Şuhut Ovası’nın hidrojeolojik raporu [Unpublished report]. DSİ 18. Bölge Müdürlüğü yayını.
  • Kurylyk, B. L., & MacQuarrie, K. T. (2013). The uncertainty associated with estimating future groundwater recharge: A summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. Journal of hydrology, 492, 244-253. https://doi.org/10.1016/j.jhydrol.2013.03.043
  • Lehner, F., Wood, A. W., Vano, J. A., Lawrence, D. M., Clark, M. P., & Mankin, J. S. (2019). The potential to reduce uncertainty in regional runoff projections from climate models. Nature Climate Change, 9(12), 926-933. https://doi.org/10.1038/s41558-019-0639-x
  • McGuffie, K., & Henderson-Sellers, A. (2014). The climate modelling primer. John Wiley & Sons.
  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey. https://doi.org/10.3133/twri06A1
  • Meteorological Service. (2014). İklim projeksiyonlarına göre akarsu havzalarında sıcaklık ve yağış değerlendirmesi.
  • Moseki, M. C. (2017). Climate change impacts on groundwater: literature review. Environmental Risk Assessment and Remediation, 2(1). https://doi.org/10.4066/2529-8046.100033
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, R. T., Emori, S., Kainuma, M., Kram, T., Meehl, A. G., Mitchell F. B. J., Nakicenovic, N., Riahi, K., Smith, J. S., Stouffer J. R., Thomson M. A., Weyant, P. J., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research assessment. Nature, 463(7282), 747- 756. https://doi.org/10.1038/nature08823
  • Önder, S., & Önder, D. (2007). Evaluation of water resources on the basis of river basins and the probable changes to occur in basin management in the future due to global climate change. In International Congress: River Basin Management (Vol. 1, pp. 22-24). https://www.researchgate.net/publication/237381367 (last accessed 13 December 2021)
  • Pour, S. H., Abd Wahab, A. K., & Shahid, S. (2020). Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia. Atmospheric Research, 233, 104720. https://doi.org/10.1016/j.atmosres.2019.104720
  • Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
  • Petpongpan, C., Ekkawatpanit, C., & Kositgittiwong, D. (2020). Climate change impact on surface water and groundwater recharge in Northern Thailand. Water, 12(4), 1029. https://doi.org/10.3390/w12041029
  • Pratoomchai, W., Kazama, S., Hanasaki, N., Ekkawatpanit, C., & Komori, D. (2014). A projection of groundwater resources in the Upper Chao Phraya River basin in Thailand. Hydrological Research Letters, 8(1), 20-26. https://doi.org/10.3178/hrl.8.20
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic change, 109(1), 33-57. https://doi.org/10.1007/s10584-011-0149-y
  • Salman, S. A., Nashwan, M. S., Ismail, T., & Shahid, S. (2020). Selection of CMIP5 general circulation model outputs of precipitation for peninsular Malaysia. Hydrology Research, 51(4), 781-798. https://doi.org/10.2166/nh.2020.154
  • Sargın, A. H. (2020). Investigation of groundwater bodies on the basis of ınteracting systems approach for sustainable groundwater management: A case study.
  • Shamsudduha, M., Taylor, R. G., Ahmed, K. M., & Zahid, A. (2011). The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeology Journal, 19(4), 901-916. https://doi.org/10.1007/s10040-011-0723-4
  • Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Surfleet, C. G., Tullos, D., Chang, H., & Jung, I. W. (2012). Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. Journal of Hydrology, 464, 233-248. https://doi.org/10.1016/j.jhydrol.2012.07.012.
  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, S. J., Edmunds, M., Konikow, L., Green, R. T., Chen, J., Taniguchi, M., Bierkens, F. P. M., MacDonald, A., Fan, Y., Maxwell, M. R., Yechieli, Y... & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329. https://doi.org/10.1038/nclimate1744
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.or
  • Tezcan, L., Meriç, T., Doğdu, N., Akan, B., Atilla, Ö., & Kurttaş, T. (2002). Akarçay Havzası hidrojeolojisi ve yeraltı suyu akım modeli final raporu. Hacettepe Üniversitesi UKAM, Ankara.
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, C. G., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, J. S., & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31. https://doi.org/10.1007/s10584-011-0148-z
  • Wada, Y., Van Beek, L. P., Wanders, N., & Bierkens, M. F. (2013). Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8(3), 034036. doi:10.1088/1748-9326/8/3/034036
  • Wada, Y., Wisser, D., & Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics 5(1), 15– 40. https://doi.org/10.5194/esd-5-15-2014
  • Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., & Schumann, A. H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL035296
  • Woldeamlak, S. T., Batelaan, O., & De Smedt, F. (2007). Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeology Journal, 15(5), 891- 901. https://doi.org/10.1007/s10040-006-0145-x

Year 2022, Volume 6, Issue 1, 145 - 176, 13.01.2022
https://doi.org/10.31807/tjwsm.947685

Abstract

Bu çalışmada, iklim değişikliğinin yeraltısuyu seviyesi ve depolanması üzerindeki olası etkisi incelenmiştir. Bu kapsamda, RCP4.5 ve RCP8.5 iklim değişikliği projeksiyonları altında, yeraltı suyu akımı HİDROTÜRK hidrojeoloji modeli kullanılarak simüle edilmiştir. Hidrojeoloji modelinde iklim girdilerinin (beslenme ve evapotranspirasyon) tahmini için, iki farklı Küresel Dolaşım Modelinin (GCM) – HadGEM2-ES ve MPI-ESM-MR – iklim çıktıları (yağış ve sıcaklık) kullanılmıştır. Yeraltı suyu seviyesinde ve depolamasında iklime bağlı değişimin iklim senaryoları gözetilerek karşılaştırmalı değerlendirilmesi amacıyla Akarçay Havzası'ndaki (Türkiye) Şuhut alüvyon akiferinde yeraltısuyu akım modeli kurulmuştur. Çalışma sonucunda, 2050'nin sonuna kadar RCP4.5 ve RCP8.5 senaryolarının her ikisine göre, öngörülen yeraltı suyu seviyelerindeki düşüşlerin birbirinden çok farklı olmayacağı ortaya konmuştur. Öte yandan, RCP8.5 senaryosuna göre, bu yüzyılın sonuna kadar akiferdeki yük kaybının (yaklaşık 114 m) ve depolamadaki azalmanın (%-17.25) – özellikle akiferin Batı kesiminde – önemli ölçüde olabileceği öngörülmüştür. Çalışma ayrıca, iklim modellerinin seçiminin yalnızca farklı model tahminlerine yol açmadığını, aynı zamanda model simülasyonlarının da farklı güvenirlik derecesine yol açtığı sonucunu desteklemiştir.

References

  • Bakker, M., Post, V. +., Langevin, C. D., Hughes, J. D., White, J. T., Starn, J. J., & Fienen, M. N. (2016). Scripting MODFLOW model development using Python and FloPy. Groundwater, 54(5), 733-739. https://doi.org/10.1111/gwat.12413
  • Bovolo, C. I., Parkin, G., & Sophocleous, M. (2009). Groundwater resources, climate and vulnerability. Environmental Research Letters, 4(3), 035001. http://dx.doi.org/10.1088/1748- 9326/4/3/035001
  • Cramer, W., Guiot, J., & Marini, K. (2018). MedECC report: Risks associated to climate and environmental changes in the mediterranean region.
  • Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., & Woodward, S. (2011). Development and evaluation of an Earth- System model–HadGEM2. Geoscientific Model Development, 4(4), 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., & Coşkun, M. (2017). Climate change projections for Turkey: Three models and two scenarios. Türkiye Su Bilimleri ve Yönetimi Dergisi, 1(1), 22-43. https://doi.org/10.31807/tjwsm.297183
  • Devlet Su İsleri Genel Müdürlüğü. (2013). Afyon Akarçay Havzası Yeraltısuyu Planlama (Hidrojeolojik Etüt) Raporu.
  • Dettinger, M. D., & Earman, S. (2007). Western ground water and climate change—pivotal to supply sustainability or vulnerable in its own right?. Ground Water Scientists and Engineers Newsletter, 4-5.
  • Dişli, E. (2005), Evrik modelleme tekniğinin yeraltı suyu akım modellerinde kullanılması: AfyonŞuhut Ovası. Yerbilimleri, 26(2), 33-47. https://dergipark.org.tr/tr/pub/yerbilimleri/issue/13628/165117
  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed.). New York: Wiley.
  • Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006
  • Döll, P., & Flörke, M. (2005). Frankfurt Hydrology Paper 03: Global-Scale Estimation of Diffuse Groundwater Recharge. Institute of Physical Geography, Frankfurt University. https://www.unifrankfurt. de/45217767/FHP_03_Doell_Floerke_2005.pdf
  • Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: a short review. Geological Society, London, Special Publications, 288(1), 1-12. https://doi.org/10.1144/SP288.1
  • Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources– a global review. Journal of Water and Climate Change, 2(4), 213-229. https://doi.org/10.2166/wcc.2011.034
  • Her, Y., Yoo, S. H., Seong, C., Jeong, J., Cho, J., & Hwang, S. (2016). Comparison of uncertainty in multi-parameter and multi-model ensemble hydrologic analysis of climate change. Hydrology and Earth System Sciences Discussions, 1-44. https://doi.org/10.5194/hess-2016-160
  • Fajardo, J., Corcoran, D., Roehrdanz, P. R., Hannah, L., & Marquet, P. A. (2020). GCM compareR: A web application to assess differences and assist in the selection of general circulation models for climate change research. Methods in Ecology and Evolution, 11(5), 656-663. https://doi.org/10.1111/2041-210X.13360\
  • General Directorate of Water Management. (2015a). An Akarçay Basin drought management plan.
  • General Directorate of Water Management. (2015b). Akarçay Havzası kuraklık yönetim planı.
  • General Directorate of Water Management. (2016). İklim değişikliğinin su kaynaklarına etkisi projesi proje nihai raporu.
  • General Directorate of Water Management. (2017). Akarçay Havzası sektörel su tahsis planının hazırlanması projesi.
  • General Directorate of Water Management. (2020a). 3 Pilot havzada nehir havza yönetim planları kapsamında ekonomik analizler ve su verimliliği çalışmaları için teknik destek projesi- Akarçay Havzası yönetim planı stratejik çevresel değerlendirme taslak raporu.
  • General Directorate of Water Management. (2020b). Su kaynaklarının sürdürülebilir yönetimi için ülkemize özgü hidroloji, su kalitesi ve ekolojisi modelleme araçlarının geliştirilmesi projesi HİDROTÜRK.
  • Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H. D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U... Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI‐ ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572-597. https://doi.org/10.1002/jame.20038
  • Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. https://doi:10.1016/j.jhydrol.2011.05.002
  • Gülenbay, A., Boydaş, T., Giritlioğlu, T., Sözen, M. (1971). Afyon – Şuhut Ovası Hidrojeolojik Etüdü. DSİ, Ankara.
  • Gürkan, H., Demir, Ö., Atay, H., Eskioğlu, O., Yazıcı, B., Demircan, M., Kocatürk, A., & Akçakaya, A. (2015). VII. Uluslararası Katılımlı Atmosfer Bilimleri Sempozyumu: MPI-ESM-MRModelinin RCP4. 5 ve RCP8. 5 Senaryolarına Göre Sıcaklık ve Yağış Projeksiyonları. İstanbul Teknik Üniversitesi. https://www.mgm.gov.tr/FILES/iklim/yayinlar/2015/1.pdf
  • Harbaugh, A. W., & McDonald, M. G. (1996). Programmer's documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model (No. 96-486). US Geological Survey.
  • Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (pp. 6-A16). Reston, VA: US Department of the Interior, US Geological Survey.
  • Healy, R. W., & Cook, P. G. (2002). Using groundwater levels to estimate recharge. Hydrogeology journal, 10(1), 91-109. https://doi.org/10.1007/s10040-001-0178-0
  • Holman, I. P. (2006). Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeology journal, 14(5), 637-647. https://doi.org/10.1007/s10040- 005-0467-0
  • International Panel on Climate Change. (2007). Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  • International Panel on Climate Change. (2014). Climate Change: Impacts, adaptation, and vulnerability. part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Jones, C., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, J. R., Bell, C., Boo, O. K., Bozzo, A., Butchart, N., Cadule, P., Corbin, D. K., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L... & Zerroukat, M. (2011). The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 4(3), 543-570. https://doi.org/10.5194/gmd-4-543-2011
  • Kaczmarska, J., Jewson, S., & Bellone, E. (2018). Quantifying the sources of simulation uncertainty in natural catastrophe models. Stochastic environmental research and risk assessment, 32(3), 591- 605. https://doi.org/10.1007/s00477-017-1393-0
  • Kale, M. M. (2021). Akarçay Kapalı Havzası için hidrolojik kuraklık analizi. Coğrafya Dergisi, (42), 165-180. https://dergipark.org.tr/en/pub/iucografya/issue/63677/892360
  • Kattenberg, A. (1996). Climate models: projections of future climate (No. CONF-960146-). American Meteorological Society, Boston, MA (United States).
  • Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Scen & I.A. Shiklomanov, (2007): Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter3-1.pdf (last accessed 3 December 2021).
  • Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change?. Hydrological sciences journal, 54(4), 665-675. https://doi.org/10.1623/hysj.54.4.665
  • Kuran, I. H. (1958). Şuhut Ovası’nın hidrojeolojik raporu [Unpublished report]. DSİ 18. Bölge Müdürlüğü yayını.
  • Kurylyk, B. L., & MacQuarrie, K. T. (2013). The uncertainty associated with estimating future groundwater recharge: A summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. Journal of hydrology, 492, 244-253. https://doi.org/10.1016/j.jhydrol.2013.03.043
  • Lehner, F., Wood, A. W., Vano, J. A., Lawrence, D. M., Clark, M. P., & Mankin, J. S. (2019). The potential to reduce uncertainty in regional runoff projections from climate models. Nature Climate Change, 9(12), 926-933. https://doi.org/10.1038/s41558-019-0639-x
  • McGuffie, K., & Henderson-Sellers, A. (2014). The climate modelling primer. John Wiley & Sons.
  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey. https://doi.org/10.3133/twri06A1
  • Meteorological Service. (2014). İklim projeksiyonlarına göre akarsu havzalarında sıcaklık ve yağış değerlendirmesi.
  • Moseki, M. C. (2017). Climate change impacts on groundwater: literature review. Environmental Risk Assessment and Remediation, 2(1). https://doi.org/10.4066/2529-8046.100033
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, R. T., Emori, S., Kainuma, M., Kram, T., Meehl, A. G., Mitchell F. B. J., Nakicenovic, N., Riahi, K., Smith, J. S., Stouffer J. R., Thomson M. A., Weyant, P. J., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research assessment. Nature, 463(7282), 747- 756. https://doi.org/10.1038/nature08823
  • Önder, S., & Önder, D. (2007). Evaluation of water resources on the basis of river basins and the probable changes to occur in basin management in the future due to global climate change. In International Congress: River Basin Management (Vol. 1, pp. 22-24). https://www.researchgate.net/publication/237381367 (last accessed 13 December 2021)
  • Pour, S. H., Abd Wahab, A. K., & Shahid, S. (2020). Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia. Atmospheric Research, 233, 104720. https://doi.org/10.1016/j.atmosres.2019.104720
  • Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
  • Petpongpan, C., Ekkawatpanit, C., & Kositgittiwong, D. (2020). Climate change impact on surface water and groundwater recharge in Northern Thailand. Water, 12(4), 1029. https://doi.org/10.3390/w12041029
  • Pratoomchai, W., Kazama, S., Hanasaki, N., Ekkawatpanit, C., & Komori, D. (2014). A projection of groundwater resources in the Upper Chao Phraya River basin in Thailand. Hydrological Research Letters, 8(1), 20-26. https://doi.org/10.3178/hrl.8.20
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic change, 109(1), 33-57. https://doi.org/10.1007/s10584-011-0149-y
  • Salman, S. A., Nashwan, M. S., Ismail, T., & Shahid, S. (2020). Selection of CMIP5 general circulation model outputs of precipitation for peninsular Malaysia. Hydrology Research, 51(4), 781-798. https://doi.org/10.2166/nh.2020.154
  • Sargın, A. H. (2020). Investigation of groundwater bodies on the basis of ınteracting systems approach for sustainable groundwater management: A case study.
  • Shamsudduha, M., Taylor, R. G., Ahmed, K. M., & Zahid, A. (2011). The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeology Journal, 19(4), 901-916. https://doi.org/10.1007/s10040-011-0723-4
  • Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Surfleet, C. G., Tullos, D., Chang, H., & Jung, I. W. (2012). Selection of hydrologic modeling approaches for climate change assessment: A comparison of model scale and structures. Journal of Hydrology, 464, 233-248. https://doi.org/10.1016/j.jhydrol.2012.07.012.
  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, S. J., Edmunds, M., Konikow, L., Green, R. T., Chen, J., Taniguchi, M., Bierkens, F. P. M., MacDonald, A., Fan, Y., Maxwell, M. R., Yechieli, Y... & Treidel, H. (2013). Ground water and climate change. Nature climate change, 3(4), 322-329. https://doi.org/10.1038/nclimate1744
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.or
  • Tezcan, L., Meriç, T., Doğdu, N., Akan, B., Atilla, Ö., & Kurttaş, T. (2002). Akarçay Havzası hidrojeolojisi ve yeraltı suyu akım modeli final raporu. Hacettepe Üniversitesi UKAM, Ankara.
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, C. G., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, J. S., & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31. https://doi.org/10.1007/s10584-011-0148-z
  • Wada, Y., Van Beek, L. P., Wanders, N., & Bierkens, M. F. (2013). Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8(3), 034036. doi:10.1088/1748-9326/8/3/034036
  • Wada, Y., Wisser, D., & Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics 5(1), 15– 40. https://doi.org/10.5194/esd-5-15-2014
  • Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., & Schumann, A. H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters, 35(24). https://doi.org/10.1029/2008GL035296
  • Woldeamlak, S. T., Batelaan, O., & De Smedt, F. (2007). Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeology Journal, 15(5), 891- 901. https://doi.org/10.1007/s10040-006-0145-x

Details

Primary Language English
Subjects Engineering, Multidisciplinary
Journal Section TURKISH JOURNAL OF WATER SCIENCES AND MANAGEMENT
Authors

Kübra ÖZDEMİR ÇALLI (Primary Author)
T.C. TARIM VE ORMAN BAKANLIĞI
0000-0003-0649-6687
Türkiye


Yasemin TAŞCI
T.C. TARIM VE ORMAN BAKANLIĞI
Türkiye


Mustafa UZUN
TARIM VE ORMAN BAKANLIGI
0000-0002-2250-8484
Türkiye


Yakup KARAASLAN
TARIM VE ORMAN BAKANLIGI
Türkiye

Thanks This research was carried out in the Republic of Turkey Ministry of Agriculture and Forestry, Directorate General for Water Management. The HİDROTÜRK hydrogeological model developed by the Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Water Management (GDWM) for the sustainable management of the water resources in Turkey was used in the modelling experiment. Kübra Özdemir Çallı (KÇ) and Yasemin Taşcı (YT) were involved in the model conceptualism and data preparation for the numerical model development and set-up. KÇ carried out the model experimental design while YT implemented the experiment in the model. KÇ performed the post-processing of the obtained model results, thereby visualizing the plots in R-studio. All authors have read and agreed to the published version of the manuscript. The authors thank to Bilal Dikmen (General Directorate of Water Management), Mustafa Uzun (Deputy Director of General Directorate of Water Management), Nermin Anul (Head of Department of Monitoring and Water Information System), and Neşat Onur Şanlı (Supervisor of Modelling Working Group) for appreciating to carry out modelling studies in Turkey.
Publication Date January 13, 2022
Published in Issue Year 2022, Volume 6, Issue 1

Cite

Bibtex @research article { tjwsm947685, journal = {Turkish Journal of Water Science and Management}, issn = {2536-474X}, eissn = {2564-7334}, address = {Orman ve Su İşleri Bakanlığı Su Yönetimi Genel Müdürlüğü Beştepe Mahallesi Alparslan Türkeş Caddesi No: 71 -Yenimahalle / ANKARA, PK: 06560}, publisher = {Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü}, year = {2022}, volume = {6}, pages = {145 - 176}, doi = {10.31807/tjwsm.947685}, title = {Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer}, key = {cite}, author = {Özdemir Çallı, Kübra and Taşcı, Yasemin and Uzun, Mustafa and Karaaslan, Yakup} }
APA Özdemir Çallı, K. , Taşcı, Y. , Uzun, M. & Karaaslan, Y. (2022). Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer . Turkish Journal of Water Science and Management , 6 (1) , 145-176 . DOI: 10.31807/tjwsm.947685
MLA Özdemir Çallı, K. , Taşcı, Y. , Uzun, M. , Karaaslan, Y. "Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer" . Turkish Journal of Water Science and Management 6 (2022 ): 145-176 <https://dergipark.org.tr/en/pub/tjwsm/issue/67914/947685>
Chicago Özdemir Çallı, K. , Taşcı, Y. , Uzun, M. , Karaaslan, Y. "Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer". Turkish Journal of Water Science and Management 6 (2022 ): 145-176
RIS TY - JOUR T1 - Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer AU - Kübra Özdemir Çallı , Yasemin Taşcı , Mustafa Uzun , Yakup Karaaslan Y1 - 2022 PY - 2022 N1 - doi: 10.31807/tjwsm.947685 DO - 10.31807/tjwsm.947685 T2 - Turkish Journal of Water Science and Management JF - Journal JO - JOR SP - 145 EP - 176 VL - 6 IS - 1 SN - 2536-474X-2564-7334 M3 - doi: 10.31807/tjwsm.947685 UR - https://doi.org/10.31807/tjwsm.947685 Y2 - 2021 ER -
EndNote %0 Turkish Journal of Water Science and Management Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer %A Kübra Özdemir Çallı , Yasemin Taşcı , Mustafa Uzun , Yakup Karaaslan %T Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer %D 2022 %J Turkish Journal of Water Science and Management %P 2536-474X-2564-7334 %V 6 %N 1 %R doi: 10.31807/tjwsm.947685 %U 10.31807/tjwsm.947685
ISNAD Özdemir Çallı, Kübra , Taşcı, Yasemin , Uzun, Mustafa , Karaaslan, Yakup . "Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer". Turkish Journal of Water Science and Management 6 / 1 (January 2022): 145-176 . https://doi.org/10.31807/tjwsm.947685
AMA Özdemir Çallı K. , Taşcı Y. , Uzun M. , Karaaslan Y. Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer. Turkish J. Water Sci. Manag.. 2022; 6(1): 145-176.
Vancouver Özdemir Çallı K. , Taşcı Y. , Uzun M. , Karaaslan Y. Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer. Turkish Journal of Water Science and Management. 2022; 6(1): 145-176.
IEEE K. Özdemir Çallı , Y. Taşcı , M. Uzun and Y. Karaaslan , "Predicting Climate-induced Groundwater Depletion: A Case Study in Şuhut Alluvial Aquifer", Turkish Journal of Water Science and Management, vol. 6, no. 1, pp. 145-176, Jan. 2022, doi:10.31807/tjwsm.947685