Derleme
BibTex RIS Kaynak Göster

Resveratrol, Oxinflammation and Epilepsy

Yıl 2022, Cilt: 2 Sayı: 1, 71 - 87, 28.01.2022

Öz

Resveratrol a natural polyphenol that is over-synthesized in some plant species, especially in stress situations, is frequently cited for its antioxidant, anti-inflammatory, neuroprotective, cardioprotective, antiviral and antibacterial properties. Prooxidant-antioxidant balance in the body is of great importance for maintaining a healthy life. The imbalance between the production of reactive oxygen species (ROS) and antioxidant activity can disrupt the redox-dependent homeostatic signal, causing inflammation processes to begin. Excessive production of ROS in the brain, which is susceptible to oxidative stress, is referred to as a common underlying factor for the etiology of a number of neurodegenerative diseases, including epilepsy. Another notable feature of resveratrol is that it can cross the blood-brain barrier, regulate redox pathways and the Sirtuin system, thereby modulating gene transcription in the brain to control inflammation and apoptosis. Although there is some evidence that inflammation and oxidative stress may play a role in the etiology of epilepsy, which is a chronic, neurological disorder, its pathogenesis has not been fully elucidated. In this review, it is discussed that resveratrol, which is capable of exhibiting neuroprotective actions, acts as an anticonvulsant agent and may be an effective agent in reducing damage to neural tissue and even preventing seizure development in auxiliary antiepileptic therapy.

Kaynakça

  • Referans1. Sayın O, Arslan N, Güner G. Resveratrol and Cardiovascular System. Turk J Biochem. 2008;33(3):117–121.
  • Referans2. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: A Natural Compound with Pharmacological Potential in Neurodegenerative Diseases. CNS Neuroscience&Therapeutics. 2008;14:234–247.
  • Referans3. Ergin K, Yaylalı A. A review about resveratrol and it’s effects. S.D.Ü. Tıp Fak. Derg. 2013;20(3):115–120.
  • Referans4. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shıshodıa S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–2840.
  • Referans5. Fremont L. Biological Effects of Resveratrol. Life Sciences. 2000;66(8):663–673.
  • Referans6. Park EU, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochimica et Biophysica Acta. 2015;1852:1071–1113.
  • Referans7. Pallàs M, Ortuño-Sahagún D, Andrés-Benito P, Ponce-Regalado DM, Rojas-Mayorquín AE. Resveratrol in epilepsy: preventive or treatment opportunities? Frontiers in Bioscience. 2014;19(1):1057–1064.
  • Referans8. Karabulut AB. Resveratrol and its effects. Türkiye Klinikleri J Med Sci. 2008;28(6):166–169.
  • Referans9. Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacology& Therapeutics. 2011;31(3):269–286.
  • Referans10. Çıracı E, Kalafat T. Effects of Resveratrol on Cardiovascular Diseases. Bes Diy Der. 2021;49(1):91–9.
  • Referans11. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology. 2020;11:694.
  • Referans12. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 4th edn, Oxford: Oxford University Press, 2006.
  • Referans13. Sun AY, Chen YM. Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science. 1998;5:401–414.
  • Referans14. Halliwell B. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology. 1989;70(6):737.
  • Referans15. Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascular system. J Vasc Res. 2002;39:191–207.
  • Referans16. Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biology. 2016;8:205–215.
  • Referans17. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox biology. 2015;4:180–183.
  • Referans18. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research. 2011;21(1):103–115.
  • Referans19. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–383.
  • Referans20. Dodson, M. Redmann, N.S. Rajasekaran, V. Darley-Usmar, J. Zhang. KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J. 2015;469:347–355.
  • Referans21. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15:411–421.
  • Referans22. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012;5(1): 9–19.
  • Referans23. Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med. 2008;10:259–274.
  • Referans24. Packer L, Cadenas E. Oxidants and antioxidants revisited. New concepts of oxidative stress. Free Radical Research. 2007;41(9):951–952.
  • Referans25. Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo Free Radic Biol Med. 2014;66:24–35.
  • Referans26. Roberts RA, Laskin DL, Smith CV, Robertson FM et al. Nitrative and oxidative stress in toxicology and disease. Toxicol Sci. 2009;112:4–16.
  • Referans27. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Ann Rev Pharmacol Toxicol. 1999;39:67–101.
  • Referans28. Scandalios JG. Genomic responses to oxidative stress. In: Meyers RA, ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Vol 5. 2nd ed. Weinheim, Germany:Wiley-VCH;2004:p489–512.
  • Referans29. Lim HJ, Lee KS, Lee S, Park JH, Choi HE, Go SH et al. 15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. Toxicology and Applied Pharmacology. 2007a;223:20–27.
  • Referans30. Mattson MP. Dietary factors, hormesis and health. Ageing Research Reviews. 2008;7:43–48.
  • Referans31. Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: from subclinical condition to pathological biomarker. Frontiers in Physiology. 2018; 9:858.
  • Referans32. Calder PC. Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology. British Journal of Clinical Pharmacology. 2013;75(3):645–662.
  • Referans33. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology. 2011;11(8):519–531.
  • Referans34. Smale ST. Selective transcription in response to an inflammatory stimulus. Cell. 2010;140(6):833–844.
  • Referans35. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Meth Enzymol. 2013;528:27–48.
  • Referans36. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–1167.
  • Referans37. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005;7:395–403.
  • Referans38. Vallabhapurapu S, Karin M. Regulation and function of NFkappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.
  • Referans39. Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. Redox regulation of NF-kappa B activation. Free Radical Biology and Medicine. 1997;22(6):1115–1126.
  • Referans40. Abbas AK, Lichtman AH, Pillai S. Basic Immunology Functions and Disorders of the Immune System Fourth Edition. Güneş Tıp Kitapevleri, İstanbul 2014.
  • Referans41. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014; 32: 659–702.
  • Referans42. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7(1): 31–40.
  • Referans43. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: role of polyphenols. Archives of Biochemistry and Biophysics. 2010;501(1):79–90.
  • Referans44. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–591.
  • Referans45. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007;404(1):1–13.
  • Referans46. Zhang R, Che, HZ, Liu JJ, Jia YY, Zhang ZQ, Yang RF, et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. Journal of Biological Chemistry. 2010;285(10):7097–7110.
  • Referans47. Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. The Journal of Clinical Investigation. 2009;119(10):3048–3058.
  • Referans48. Dey A, Kang X, Qiu JG, Du YF, Jiang JX. AntiInflammatory small molecules to treat seizures and epilepsy: From bench to bedside. Trends Pharmacol Sci. 2016;37(6):463–84.
  • Referans49. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Medicine and Cellular Longevity. 2015;610813.
  • Referans50. Halliwell B. Role of free radicals in the neurodegenerative diseases. Drugs&Aging. 2001;18(9):685–716.
  • Referans51. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–350.
  • Referans52. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences. 2008;1147:61–69.
  • Referans53. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protec-tion against oxidative stress in primary cortical as-trocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278:12029–12038.
  • Referans54. Shih AY, Johnson DA, Wong G et al. Co-ordinate regulation of glutathione biosynthesis andrelease by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–3406.
  • Referans55. Calkins MJ, Jakel RJ, Johnson DA, et al. Protection from mitochondrial complex II inhibitionin vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci USA. 2005;102:244–249.
  • Referans56. Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci Lett. 2017;6:1-6.
  • Referans57. Singh A, Trevick S. The epidemiology of global epilepsy. Neurol Clin. 2016;34(4):837–847.
  • Referans58. Devinsky O. Effect of seizure on autonomic and cardiovascular function. Epilepsy Currents. 2004;4(2):43-46.
  • Referans59. Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014;37(2):55–65.
  • Referans60. Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. Frontiers in Cellular Neurosciences. 2013;7(195):1–8.
  • Referans61. Pitkänen A. Lukasiuk K, Dudek E, Staley J. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(a022822):1–17.
  • Referans62. Yıldırım M, Değirmenci U, Yalın S. The role of inflammation in epilepsy. Mersin Univ Saglık Bilim Derg. 2019;12(3):525–593.
  • Referans63. Sonat FA. Epilepsy in animals. Uludag Univ J Fac Vet Med. 2009, 28(1):47–52.
  • Referans64. Cloix JF, Hévor T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr Med Chem. 2009, 16(7):841–853.
  • Referans65. Vezzani A. İnflamation and epilepsy. Epilepsy Currents. 2005;5(1):1–6.
  • Referans66. Yavuz ENV, Tüzün E. Epilepsy and Autoimmunity: Basic Physiopathological Mechanisms. Epilepsi. 2016;22(1):1–6.
  • Referans67. Rana A, Musto E. The role of inflammation in the development of epilepsy. Journal of Neuroinflammation. 2018;15(144)1–12.
  • Referans68. Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2016;6(a022699):1–21.
  • Referans69. Scorza C, Marques M, Gomes da Silva S, Naffah-Mazzacoratti M, Scorza F, Cavalheiro E. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis. Neurosci Lett. 2018;668:169–173.
  • Referans70. Ichiyama T, Nishikawa M, Yoshitomi T, Hayashi T, Furukawa S. Tumor necrosis factor-a, interleukin-l, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures comparison with acute encephalitis/encephalopathy. Neurology. 1998;50(2):407–11.
  • Referans71. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res. 2016;8(10):4499–509.
  • Referans72. Aksöz E. The Role of Neuroinflammation in Epileptogenesis and Antiepileptogenic Therapy Targets Directed to Neuroinflammation. SDÜ Sağlık Bilimleri Dergisi. 2018;9(2):130–135.
  • Referans73. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica. 2017; 29(1):1–16.
  • Referans74. Abbott JN, Friedman A. Overview and introduction: The blood–brain barrier in health and disease. Epilepsia. 2012;53(0 6):1–6.
  • Referans75. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Experimental Neurology. 2013;244:11–21.
  • Referans76. Pandey KB, Rizvi SI. Anti-oxidative action of resveratrol: implications for human health. Arab J Chem. 2011;4:293–298.
  • Referans77. Shang YJ, Qian YP, Liu XD, Dai F, Shang XL, Jia WQ, Liu Q, Fang JG, Zhou B. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: Influence of the solvent, radical, and substitution. J Org Chem. 2009;74:5025–5031.
  • Referans78. Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors. 2018;44(1): 6–49.
  • Referans79. Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun. 2005; 331:993–1000.
  • Referans80. Alayev A, Salamon RS, Schwartz NS, Berman AY, Wiener SL, Holz MK. Combination of rapamycin and resveratrol for treatment of bladder cancer. Journal of Cellular Physiology. 2017;232(2):436–446.
  • Referans81. Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci. 2014;6:218.
  • Referans82. Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol. 2017;54:2622–2635.
  • Referans83. Jang JH, Surh YJ. Protective effect of resveratrol on β-amyloidinduced oxidative PC12 cell death. Free Radic Biol Med. 2003;34:1100–1110.
  • Referans84. Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NFκB for treatment of Alzheimer’s disease. Pharmacol Res. 2018;129:262–273.
  • Referans85. Rege SD, Geetha T, Broderick TL, Babu JR. Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res. 2015;12:147–156.
  • Referans86. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. 2008;9(2):6.
  • Referans87. Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors. 2010;36(5):370–376.
  • Referans88. De La Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochemical Society Transactions. 2007;35(5):1156–1160.
  • Referans89. De La Lastra CA, Villegas I. Resveratrol as an anti‐inflammatory and anti‐aging agent: Mechanisms and clinical implications. Molecular Nutrition & Food Research. 2005;49(5):405–430.

Resveratrol, Oksenflamasyon ve Epilepsi

Yıl 2022, Cilt: 2 Sayı: 1, 71 - 87, 28.01.2022

Öz

Bazı bitki türlerinin özellikle stres durumlarında sentezini artırdığı doğal bir polifenol olan Resveratrol (RVS), antioksidan, antiinflamatuar, nöroprotektif, kardiyoprotektif, antiviral ve antibakteriyel özellikleri ile sıkça gündeme gelmektedir. Vücutta prooksidan-antioksidan dengesi, sağlıklı bir yaşam sürdürülebilmesi için büyük önem taşımaktadır. Reaktif oksijen türlerinin (ROS) üretimi ile antioksidan aktivite arasındaki dengesizlik redoksa bağımlı homeostatik sinyali bozarak inflamasyon süreçlerinin başlamasına neden olabilir. Oksidatif strese yatkın olan beyindeki aşırı ROS üretimi, epilepsi de dahil bir dizi nörodejeneratif hastalığın etiyolojisi için ortak bir altta yatan faktör olarak anılır. RVS’ün kayda değer özelliklerinden bir diğeri de, kan-beyin bariyerini geçebilmesi, redoks yollarını ve Sirtuin sistemini düzenleyebilmesi, böylelikle beyinde gen transkripsiyonunu modüle ederek inflamasyonu ve apoptozu kontrol edebilmesidir. Bugüne kadar kronik, nörolojik bir bozukluk olan epilepsi etyolojisinde, inflamasyon ve oksidatif stresin rolü olabileceğine dair bazı kanıtlar olsa da, patogenezi tam olarak aydınlatılamamıştır. Bu derlemede, nöroprotektif eylemler sergileyebilme yeteneğindeki RVS’ün bir antikonvülzan ajan gibi davrandığı, nöral dokudaki hasarı azaltmada ve hatta yardımcı antiepileptik tedavide nöbet gelişimini önlemede etkili bir ajan olabileceği tartışılmaktadır.

Kaynakça

  • Referans1. Sayın O, Arslan N, Güner G. Resveratrol and Cardiovascular System. Turk J Biochem. 2008;33(3):117–121.
  • Referans2. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: A Natural Compound with Pharmacological Potential in Neurodegenerative Diseases. CNS Neuroscience&Therapeutics. 2008;14:234–247.
  • Referans3. Ergin K, Yaylalı A. A review about resveratrol and it’s effects. S.D.Ü. Tıp Fak. Derg. 2013;20(3):115–120.
  • Referans4. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shıshodıa S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–2840.
  • Referans5. Fremont L. Biological Effects of Resveratrol. Life Sciences. 2000;66(8):663–673.
  • Referans6. Park EU, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochimica et Biophysica Acta. 2015;1852:1071–1113.
  • Referans7. Pallàs M, Ortuño-Sahagún D, Andrés-Benito P, Ponce-Regalado DM, Rojas-Mayorquín AE. Resveratrol in epilepsy: preventive or treatment opportunities? Frontiers in Bioscience. 2014;19(1):1057–1064.
  • Referans8. Karabulut AB. Resveratrol and its effects. Türkiye Klinikleri J Med Sci. 2008;28(6):166–169.
  • Referans9. Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacology& Therapeutics. 2011;31(3):269–286.
  • Referans10. Çıracı E, Kalafat T. Effects of Resveratrol on Cardiovascular Diseases. Bes Diy Der. 2021;49(1):91–9.
  • Referans11. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology. 2020;11:694.
  • Referans12. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 4th edn, Oxford: Oxford University Press, 2006.
  • Referans13. Sun AY, Chen YM. Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science. 1998;5:401–414.
  • Referans14. Halliwell B. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology. 1989;70(6):737.
  • Referans15. Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascular system. J Vasc Res. 2002;39:191–207.
  • Referans16. Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biology. 2016;8:205–215.
  • Referans17. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox biology. 2015;4:180–183.
  • Referans18. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research. 2011;21(1):103–115.
  • Referans19. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–383.
  • Referans20. Dodson, M. Redmann, N.S. Rajasekaran, V. Darley-Usmar, J. Zhang. KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J. 2015;469:347–355.
  • Referans21. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15:411–421.
  • Referans22. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012;5(1): 9–19.
  • Referans23. Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med. 2008;10:259–274.
  • Referans24. Packer L, Cadenas E. Oxidants and antioxidants revisited. New concepts of oxidative stress. Free Radical Research. 2007;41(9):951–952.
  • Referans25. Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo Free Radic Biol Med. 2014;66:24–35.
  • Referans26. Roberts RA, Laskin DL, Smith CV, Robertson FM et al. Nitrative and oxidative stress in toxicology and disease. Toxicol Sci. 2009;112:4–16.
  • Referans27. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Ann Rev Pharmacol Toxicol. 1999;39:67–101.
  • Referans28. Scandalios JG. Genomic responses to oxidative stress. In: Meyers RA, ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Vol 5. 2nd ed. Weinheim, Germany:Wiley-VCH;2004:p489–512.
  • Referans29. Lim HJ, Lee KS, Lee S, Park JH, Choi HE, Go SH et al. 15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. Toxicology and Applied Pharmacology. 2007a;223:20–27.
  • Referans30. Mattson MP. Dietary factors, hormesis and health. Ageing Research Reviews. 2008;7:43–48.
  • Referans31. Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: from subclinical condition to pathological biomarker. Frontiers in Physiology. 2018; 9:858.
  • Referans32. Calder PC. Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology. British Journal of Clinical Pharmacology. 2013;75(3):645–662.
  • Referans33. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology. 2011;11(8):519–531.
  • Referans34. Smale ST. Selective transcription in response to an inflammatory stimulus. Cell. 2010;140(6):833–844.
  • Referans35. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Meth Enzymol. 2013;528:27–48.
  • Referans36. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–1167.
  • Referans37. Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005;7:395–403.
  • Referans38. Vallabhapurapu S, Karin M. Regulation and function of NFkappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.
  • Referans39. Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. Redox regulation of NF-kappa B activation. Free Radical Biology and Medicine. 1997;22(6):1115–1126.
  • Referans40. Abbas AK, Lichtman AH, Pillai S. Basic Immunology Functions and Disorders of the Immune System Fourth Edition. Güneş Tıp Kitapevleri, İstanbul 2014.
  • Referans41. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014; 32: 659–702.
  • Referans42. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011; 7(1): 31–40.
  • Referans43. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I. Regulation of SIRT1 in cellular functions: role of polyphenols. Archives of Biochemistry and Biophysics. 2010;501(1):79–90.
  • Referans44. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–591.
  • Referans45. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007;404(1):1–13.
  • Referans46. Zhang R, Che, HZ, Liu JJ, Jia YY, Zhang ZQ, Yang RF, et al. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. Journal of Biological Chemistry. 2010;285(10):7097–7110.
  • Referans47. Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. The Journal of Clinical Investigation. 2009;119(10):3048–3058.
  • Referans48. Dey A, Kang X, Qiu JG, Du YF, Jiang JX. AntiInflammatory small molecules to treat seizures and epilepsy: From bench to bedside. Trends Pharmacol Sci. 2016;37(6):463–84.
  • Referans49. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Medicine and Cellular Longevity. 2015;610813.
  • Referans50. Halliwell B. Role of free radicals in the neurodegenerative diseases. Drugs&Aging. 2001;18(9):685–716.
  • Referans51. Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–350.
  • Referans52. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences. 2008;1147:61–69.
  • Referans53. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protec-tion against oxidative stress in primary cortical as-trocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278:12029–12038.
  • Referans54. Shih AY, Johnson DA, Wong G et al. Co-ordinate regulation of glutathione biosynthesis andrelease by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–3406.
  • Referans55. Calkins MJ, Jakel RJ, Johnson DA, et al. Protection from mitochondrial complex II inhibitionin vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci USA. 2005;102:244–249.
  • Referans56. Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci Lett. 2017;6:1-6.
  • Referans57. Singh A, Trevick S. The epidemiology of global epilepsy. Neurol Clin. 2016;34(4):837–847.
  • Referans58. Devinsky O. Effect of seizure on autonomic and cardiovascular function. Epilepsy Currents. 2004;4(2):43-46.
  • Referans59. Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014;37(2):55–65.
  • Referans60. Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. Frontiers in Cellular Neurosciences. 2013;7(195):1–8.
  • Referans61. Pitkänen A. Lukasiuk K, Dudek E, Staley J. Epileptogenesis. Cold Spring Harb Perspect Med. 2015;5(a022822):1–17.
  • Referans62. Yıldırım M, Değirmenci U, Yalın S. The role of inflammation in epilepsy. Mersin Univ Saglık Bilim Derg. 2019;12(3):525–593.
  • Referans63. Sonat FA. Epilepsy in animals. Uludag Univ J Fac Vet Med. 2009, 28(1):47–52.
  • Referans64. Cloix JF, Hévor T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr Med Chem. 2009, 16(7):841–853.
  • Referans65. Vezzani A. İnflamation and epilepsy. Epilepsy Currents. 2005;5(1):1–6.
  • Referans66. Yavuz ENV, Tüzün E. Epilepsy and Autoimmunity: Basic Physiopathological Mechanisms. Epilepsi. 2016;22(1):1–6.
  • Referans67. Rana A, Musto E. The role of inflammation in the development of epilepsy. Journal of Neuroinflammation. 2018;15(144)1–12.
  • Referans68. Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2016;6(a022699):1–21.
  • Referans69. Scorza C, Marques M, Gomes da Silva S, Naffah-Mazzacoratti M, Scorza F, Cavalheiro E. Status epilepticus does not induce acute brain inflammatory response in the Amazon rodent Proechimys, an animal model resistant to epileptogenesis. Neurosci Lett. 2018;668:169–173.
  • Referans70. Ichiyama T, Nishikawa M, Yoshitomi T, Hayashi T, Furukawa S. Tumor necrosis factor-a, interleukin-l, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures comparison with acute encephalitis/encephalopathy. Neurology. 1998;50(2):407–11.
  • Referans71. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res. 2016;8(10):4499–509.
  • Referans72. Aksöz E. The Role of Neuroinflammation in Epileptogenesis and Antiepileptogenic Therapy Targets Directed to Neuroinflammation. SDÜ Sağlık Bilimleri Dergisi. 2018;9(2):130–135.
  • Referans73. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica. 2017; 29(1):1–16.
  • Referans74. Abbott JN, Friedman A. Overview and introduction: The blood–brain barrier in health and disease. Epilepsia. 2012;53(0 6):1–6.
  • Referans75. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Experimental Neurology. 2013;244:11–21.
  • Referans76. Pandey KB, Rizvi SI. Anti-oxidative action of resveratrol: implications for human health. Arab J Chem. 2011;4:293–298.
  • Referans77. Shang YJ, Qian YP, Liu XD, Dai F, Shang XL, Jia WQ, Liu Q, Fang JG, Zhou B. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: Influence of the solvent, radical, and substitution. J Org Chem. 2009;74:5025–5031.
  • Referans78. Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors. 2018;44(1): 6–49.
  • Referans79. Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun. 2005; 331:993–1000.
  • Referans80. Alayev A, Salamon RS, Schwartz NS, Berman AY, Wiener SL, Holz MK. Combination of rapamycin and resveratrol for treatment of bladder cancer. Journal of Cellular Physiology. 2017;232(2):436–446.
  • Referans81. Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci. 2014;6:218.
  • Referans82. Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol. 2017;54:2622–2635.
  • Referans83. Jang JH, Surh YJ. Protective effect of resveratrol on β-amyloidinduced oxidative PC12 cell death. Free Radic Biol Med. 2003;34:1100–1110.
  • Referans84. Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NFκB for treatment of Alzheimer’s disease. Pharmacol Res. 2018;129:262–273.
  • Referans85. Rege SD, Geetha T, Broderick TL, Babu JR. Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res. 2015;12:147–156.
  • Referans86. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. 2008;9(2):6.
  • Referans87. Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors. 2010;36(5):370–376.
  • Referans88. De La Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochemical Society Transactions. 2007;35(5):1156–1160.
  • Referans89. De La Lastra CA, Villegas I. Resveratrol as an anti‐inflammatory and anti‐aging agent: Mechanisms and clinical implications. Molecular Nutrition & Food Research. 2005;49(5):405–430.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Zeynep Kasap Acungil 0000-0003-0475-7628

Elif Azize Özşahin Delibaş 0000-0002-4195-0884

Yayımlanma Tarihi 28 Ocak 2022
Gönderilme Tarihi 17 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 1

Kaynak Göster

Vancouver Kasap Acungil Z, Özşahin Delibaş EA. Resveratrol, Oksenflamasyon ve Epilepsi. TOGÜ Sağlık Bilimleri Dergisi. 2022;2(1):71-87.