Research Article
BibTex RIS Cite

Spatial Variation of DTPA Extractable Iron, Copper, Zinc and Manganese Concentrations in Suluova and Merzifon Plain Soils

Year 2015, Volume: 4 Issue: 2, 1 - 13, 01.12.2015
https://doi.org/10.21657/tsd.70744

Abstract

Appropriate plant nutrient management is important for achieving high crop yield and protecting environmental quality. The aims of this study are; i.) to determine the DTPA extractable micronutrient concentrations in Suluova and Merzifon Plains, ii.) to understand the relationship between micronutrients and related soil properties affecting the availability of micronutrients, and iii.) to figure out the spatial structure of micronutrients. Seventy-Six soil samples from Merzifon and 143 samples from Suluova Plain were collected to measure available zinc (Zn), iron (Fe), cupper (Cu) and manganese (Mn) concentrations along with soil clay, silt and sand contents, pH, electrical conductivity (EC), calcium carbonate and organic matter contents. Descriptive results showed that Zn and Fe deficiencies were widespread throughout the study area while soils had sufficient amount of Cu and Mn. Mean Zn and Fe concentrations in Merzifon Plain were respectively 0.28 mg kg-1 and 2.0 mg kg-1 and 0.28 mg kg-1 and 3.26 mg kg-1 for Suluova Plain, respectively. Soil Zn and Mn concentrations had positive and pH and Zn had negative statistically important relations (P<0.01). In general, Zn concentrations were inadequate level at high pH locations whereas adequate Zn concentrations were obtained at locations where soil pH is between 7.20 to 8.00. Available Fe had positive correlations with Cu and Mn concentrations whereas statistically important negative correlations were obtained with sand content. Iron in Merzifon Plain and Fe, Zn and Cu in Suluova Plain had strong spatial dependency, while other micronutrients showed moderate spatial dependency. The range values obtained in geostatistical modeling should be taken into consideration as the minimum sampling distance for the future studies in the study area.

References

  • Allison LE, Moodie CD (1965). Carbonate. In: C.A. Black et al (ed.) Methods of Soil Analysis, Part 2. Agronomy (9):1379- 1400. Am. Soc. Of Agron., Inc., Mad., Wisc, U.S.A.
  • Alloway BJ (2008). Micronutrient deficiencies in global crop production. Dordrecht, The Netherlands: Springer. 353 p.
  • Behera SK, Singh MV, Singh KN, Todwal S (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma (162): 242–250.
  • Camberdella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994). Field scale variability soil properties in Central Iowa soils. Soil Sci. Soc. Am. J. (58):1501- 1511.
  • Çoban A (2003). Tarıma dayalı sanayinin beşerî ve ekonomik bakımdan hızlı değişim sürecine etkileri üzerine bir örnek: SULUOVA. GÜ, Gazi Eğitim Fakültesi Dergisi, 23 (3):71- 87.
  • Dudley LM, Mclean JE, Furst TH, Jurinak JJ (1991). Sorption of cadmium and copper from an acid mine waste extract by two calcareous soils: Column studies. Soil Sci., 151(2): 121- 135.
  • Erdem H, Budak M, Acir N, Gokmen F, (2012). Micronutrient variability in a lacustrine environment of calcic haplosalids. Fresenius Environmental Bulletin, 21(3), 553-562.
  • Esri (2006). Environmental System Research Institute. Redland CA,USA.
  • FAO. (1990). Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Follet RH (1969). Zn, Fe, Mn and Cu in Colorado Soils. PhD. Dissertation. Colo. State Univ.
  • Foroughifar H, Jafarzadeh AA, Torabi H, Pakpour A, Miransari M (2013). Using geostatistics and geographic information system techniques to characterize spatial variability of soil properties, including micronutrients. Communications in Soil Science and Plant Analysis, 44(8):1273-1281.
  • Gamma Design Software (2004). GS+; Geostatistics for the Environmental Sciences. Plainwell, Michigan, United States, Gamma Design Software.
  • Gee GW, Bauder JW (1986). Particle-size Analysis. P. 383 - 411. In: A.L.Page (ed.). Methods of soil analysis, Part 1, Physical and mineralogical methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI.
  • Ghasemi-Fasaei R, Maftoun M, Ronaghi A, Karimian N, Yasrebi J, Assad MT, Ippolito JA. (2006). Kinetics of copper desorption from highly calcareous soils. Communications in Soil Science and Plant Analysis 37:797–809.
  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL, (1999). Soil fertility and fertilizers. An introduction to nutrient management, 6th ed. Prentice Hall, Upper Saddle River, NJ.
  • Heuvelink GBM, Webster R (2001). Modelling soil variation: Past, present and future. Geoderma (100):269–301.
  • Hodges SC (2010). Soil fertility basics. Soil Science Extension, North Carolina State Univ.
  • Hong E, Ketterings Q, McBride M. (2010). Manganese. Nutrient Management Spear Program Agronomy Fact Sheet Series. http://nmsp.cals.cornell.edu. Fact Sheet 49.
  • Lindsay WL, Norwell WA (1978). Development of DTPA Soil Test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42(3):421-428.
  • McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000). An overwiev of pedometric techniques for use in soil survey. Geoderma 97 (3-4): 293-327.
  • Nael M, Khademi H, Jalalian A, Schulin R. (2009). Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz, Iran. Geoderma 152: 157–170.
  • Najafi-Ghiri M, Ghasemi-Fasaei, R, Farrokhnejad E. (2013). Factors affecting micronutrient availability in calcareous soils of Southern Iran. Arid Land Research and Management, 27(3), 203-215.
  • Nelson DW, Sommer LE (1982). Total carbon, organic carbon, and organic matter. p. 539-579. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc. Agron. Madison, WI.
  • Pegoraro RF, Silva IR, Novais RF, Mendonça ES, Gebrim F, Moreira FF (2006). Fluxo difuso e biodisponibilidade de zinco, cobre, ferro e manganês no solo: influência da calagem, textura do solo e resíduos vegetais. Revista Brasileira de Ciência do Solo, 30:859-868.
  • Reyhanitabar A, Karimian N (2008). Kinetics of copper desorption of selected calcareous soils from Iran. Am Eur J Agric Environ Sci, 4(3):287-293.
  • Rhoades JD (1982). Cation exchange capacity. In: Page AL, Miller RH, Keeney DR (eds.) Methods of soil analysis. Part 2. Agron. Monogr. 9, Am. Soc. Agron., Madison, WI. P. 149-157.
  • Sharma BD, Kumar R, Singh B, Sethi M. (2009). Micronutrients distribution in salt-affected soils of the Punjab in relation to soil properties. Archives of Agronomy and Soil Science, 55(4), 367-377.
  • Sharma BD, Arora H, Kumar R, Nayyar VK. (2004). Relationship between soil characteristics and total and DTPA- extractable micronutrients in Inceptisols of Punjab. Communication in Soil Science and Plant Analysis 35: 799– 818.
  • Sharma BD, Jassal HS, Sawhney JS, Sidhu PS, (1999). Micronutrient distribution in different physiographic units of the Siwalik hills of the semiarid tract of Punjab, India. Arid Land Research and Management 13(2): 189–200.
  • Tümsavaş Z, Çelik İ. (2005). Bursa ili kireçsiz kahverengi topraklarının bazı özellikleri ve besin elementleri içerikleri. Ç. Ü. Z. F. Dergisi, 20(1): 69-83.
  • Ülgen N, Yurtsever N (1974). Türkiye Gübre ve Gübreleme Rehberi. Toprak ve Gübre Araştırma Enstitüsü Teknik Yayın No:28, Ankara.
  • Vieira SR, Nielsen DR., Biggar JW. (1981). Spatial variability of field-measured ınfiltration rate. Soil Sci. Soc. Am. J., 45: 1040- 1048.
  • Wenming D Zhijun G, Jinzhou D, Liying Z, Zuyi T, (2001). Sorption characteristics of Zn (II) by calcareous soil-radiotracer study. Applied Radiation and Isotopes 54, 371-375.
  • White JG, Zasoski RJ (1999). Mapping soil micronutrients. Field Crops Research, 60 (1):11-26.
  • Wu C, Luo Y, Zhang L, (2010). Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 156: 200–206.

Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi

Year 2015, Volume: 4 Issue: 2, 1 - 13, 01.12.2015
https://doi.org/10.21657/tsd.70744

Abstract

Bitki besin elementlerinin doğru amenajmanı, yüksek ürün elde etme ve çevresel kalitenin korunmasında oldukça önemlidir. Bu çalışmanın amaçları; Suluova ve Merzifon Ovaları topraklarının DTPA'da ekstrakte edilebilir mikro element konsantrasyonlarını belirlemek, bu mikro elementlerin yarayışlılığına etki eden diğer toprak özellikleri ile ilişkisini anlamak ve mikro elementlerin mesafeye bağlı yapısını ortaya koymaktır. Merzifon ovasından 76 ve Suluova ovasından 143 adet toprak örneği alınmış ve yarayışlı çinko (Zn), demir (Fe), bakır (Cu) ve mangan (Mn) konsantrasyonları ile toprak kil, silt ve kum içerikleri, pH, elektriksel iletkenlik (EC), kalsiyum karbonat ve organik madde içerikleri belirlenmiştir. Tanımlayıcı istatistik sonuçları çalışma alanının büyük bir kısmının Zn ve Fe açısından yetersiz, ancak Mn ve Cu bakımından toprakların yeterli olduğunu göstermiştir. Ortalama Zn ve Fe konsantrasyonları Merzifon ovasında sırasıyla 0.28 mg kg-1 ve 2.0 mg kg-1 ve Suluova ovasında ise 0.28 mg kg-1 ve 3.26 mg kg-1'dır. Toprakların Zn konsantrasyonu istatistiksel olarak Mn ile pozitif ve pH ile negatif önemli korelasyonlar (P<0.01) göstermiştir. Genelde pH'nın yüksek olduğu yerlerde Zn yetersizliği görülürken, pH' nın 7.30-8.00 arasında olduğu bir kısım alanlarda Zn' nun bitkiler için yeterli düzeyde olduğu belirlenmiştir. Yarayışlı Fe, Cu ve Mn ile pozitif korelasyonlara sahip iken, kum içeriği ile negatif korelasyon göstermiştir. Merzifon ovasında Fe, Suluova ovasında ise Fe, Zn ve Cu' ın mesafeye bağımlılığının yüksek olduğu belirlenmiştir. Diğer mikro elementlerin ise orta düzeyde mesafeye bağımlılık gösterdiği tespit edilmiştir. Jeoistatistiksel modellemede elde edilen range değerleri, çalışma alanında ilgili özelliğin örneklenmesinde minimum mesafe olarak alınmalıdır.

References

  • Allison LE, Moodie CD (1965). Carbonate. In: C.A. Black et al (ed.) Methods of Soil Analysis, Part 2. Agronomy (9):1379- 1400. Am. Soc. Of Agron., Inc., Mad., Wisc, U.S.A.
  • Alloway BJ (2008). Micronutrient deficiencies in global crop production. Dordrecht, The Netherlands: Springer. 353 p.
  • Behera SK, Singh MV, Singh KN, Todwal S (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma (162): 242–250.
  • Camberdella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994). Field scale variability soil properties in Central Iowa soils. Soil Sci. Soc. Am. J. (58):1501- 1511.
  • Çoban A (2003). Tarıma dayalı sanayinin beşerî ve ekonomik bakımdan hızlı değişim sürecine etkileri üzerine bir örnek: SULUOVA. GÜ, Gazi Eğitim Fakültesi Dergisi, 23 (3):71- 87.
  • Dudley LM, Mclean JE, Furst TH, Jurinak JJ (1991). Sorption of cadmium and copper from an acid mine waste extract by two calcareous soils: Column studies. Soil Sci., 151(2): 121- 135.
  • Erdem H, Budak M, Acir N, Gokmen F, (2012). Micronutrient variability in a lacustrine environment of calcic haplosalids. Fresenius Environmental Bulletin, 21(3), 553-562.
  • Esri (2006). Environmental System Research Institute. Redland CA,USA.
  • FAO. (1990). Micronutrient, Assessment at the Country Level: An International Study. FAO Soil Bulletin by Sillanpaa. Rome.
  • Follet RH (1969). Zn, Fe, Mn and Cu in Colorado Soils. PhD. Dissertation. Colo. State Univ.
  • Foroughifar H, Jafarzadeh AA, Torabi H, Pakpour A, Miransari M (2013). Using geostatistics and geographic information system techniques to characterize spatial variability of soil properties, including micronutrients. Communications in Soil Science and Plant Analysis, 44(8):1273-1281.
  • Gamma Design Software (2004). GS+; Geostatistics for the Environmental Sciences. Plainwell, Michigan, United States, Gamma Design Software.
  • Gee GW, Bauder JW (1986). Particle-size Analysis. P. 383 - 411. In: A.L.Page (ed.). Methods of soil analysis, Part 1, Physical and mineralogical methods. Second Edition, Agronomy Monograph 9, American Society of Agronomy, Madison, WI.
  • Ghasemi-Fasaei R, Maftoun M, Ronaghi A, Karimian N, Yasrebi J, Assad MT, Ippolito JA. (2006). Kinetics of copper desorption from highly calcareous soils. Communications in Soil Science and Plant Analysis 37:797–809.
  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL, (1999). Soil fertility and fertilizers. An introduction to nutrient management, 6th ed. Prentice Hall, Upper Saddle River, NJ.
  • Heuvelink GBM, Webster R (2001). Modelling soil variation: Past, present and future. Geoderma (100):269–301.
  • Hodges SC (2010). Soil fertility basics. Soil Science Extension, North Carolina State Univ.
  • Hong E, Ketterings Q, McBride M. (2010). Manganese. Nutrient Management Spear Program Agronomy Fact Sheet Series. http://nmsp.cals.cornell.edu. Fact Sheet 49.
  • Lindsay WL, Norwell WA (1978). Development of DTPA Soil Test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42(3):421-428.
  • McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000). An overwiev of pedometric techniques for use in soil survey. Geoderma 97 (3-4): 293-327.
  • Nael M, Khademi H, Jalalian A, Schulin R. (2009). Effect of geo-pedological conditions on the distribution and chemical speciation of selected trace elements in forest soils of western Alborz, Iran. Geoderma 152: 157–170.
  • Najafi-Ghiri M, Ghasemi-Fasaei, R, Farrokhnejad E. (2013). Factors affecting micronutrient availability in calcareous soils of Southern Iran. Arid Land Research and Management, 27(3), 203-215.
  • Nelson DW, Sommer LE (1982). Total carbon, organic carbon, and organic matter. p. 539-579. In A.L. Page (ed.) Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc. Agron. Madison, WI.
  • Pegoraro RF, Silva IR, Novais RF, Mendonça ES, Gebrim F, Moreira FF (2006). Fluxo difuso e biodisponibilidade de zinco, cobre, ferro e manganês no solo: influência da calagem, textura do solo e resíduos vegetais. Revista Brasileira de Ciência do Solo, 30:859-868.
  • Reyhanitabar A, Karimian N (2008). Kinetics of copper desorption of selected calcareous soils from Iran. Am Eur J Agric Environ Sci, 4(3):287-293.
  • Rhoades JD (1982). Cation exchange capacity. In: Page AL, Miller RH, Keeney DR (eds.) Methods of soil analysis. Part 2. Agron. Monogr. 9, Am. Soc. Agron., Madison, WI. P. 149-157.
  • Sharma BD, Kumar R, Singh B, Sethi M. (2009). Micronutrients distribution in salt-affected soils of the Punjab in relation to soil properties. Archives of Agronomy and Soil Science, 55(4), 367-377.
  • Sharma BD, Arora H, Kumar R, Nayyar VK. (2004). Relationship between soil characteristics and total and DTPA- extractable micronutrients in Inceptisols of Punjab. Communication in Soil Science and Plant Analysis 35: 799– 818.
  • Sharma BD, Jassal HS, Sawhney JS, Sidhu PS, (1999). Micronutrient distribution in different physiographic units of the Siwalik hills of the semiarid tract of Punjab, India. Arid Land Research and Management 13(2): 189–200.
  • Tümsavaş Z, Çelik İ. (2005). Bursa ili kireçsiz kahverengi topraklarının bazı özellikleri ve besin elementleri içerikleri. Ç. Ü. Z. F. Dergisi, 20(1): 69-83.
  • Ülgen N, Yurtsever N (1974). Türkiye Gübre ve Gübreleme Rehberi. Toprak ve Gübre Araştırma Enstitüsü Teknik Yayın No:28, Ankara.
  • Vieira SR, Nielsen DR., Biggar JW. (1981). Spatial variability of field-measured ınfiltration rate. Soil Sci. Soc. Am. J., 45: 1040- 1048.
  • Wenming D Zhijun G, Jinzhou D, Liying Z, Zuyi T, (2001). Sorption characteristics of Zn (II) by calcareous soil-radiotracer study. Applied Radiation and Isotopes 54, 371-375.
  • White JG, Zasoski RJ (1999). Mapping soil micronutrients. Field Crops Research, 60 (1):11-26.
  • Wu C, Luo Y, Zhang L, (2010). Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 156: 200–206.
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Elif Günal This is me

Halil Erdem This is me

Publication Date December 1, 2015
Published in Issue Year 2015 Volume: 4 Issue: 2

Cite

APA Günal, E., & Erdem, H. (2015). Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi. Toprak Su Dergisi, 4(2), 1-13. https://doi.org/10.21657/tsd.70744
AMA Günal E, Erdem H. Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi. TSD. December 2015;4(2):1-13. doi:10.21657/tsd.70744
Chicago Günal, Elif, and Halil Erdem. “Suluova Ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko Ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi”. Toprak Su Dergisi 4, no. 2 (December 2015): 1-13. https://doi.org/10.21657/tsd.70744.
EndNote Günal E, Erdem H (December 1, 2015) Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi. Toprak Su Dergisi 4 2 1–13.
IEEE E. Günal and H. Erdem, “Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi”, TSD, vol. 4, no. 2, pp. 1–13, 2015, doi: 10.21657/tsd.70744.
ISNAD Günal, Elif - Erdem, Halil. “Suluova Ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko Ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi”. Toprak Su Dergisi 4/2 (December 2015), 1-13. https://doi.org/10.21657/tsd.70744.
JAMA Günal E, Erdem H. Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi. TSD. 2015;4:1–13.
MLA Günal, Elif and Halil Erdem. “Suluova Ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko Ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi”. Toprak Su Dergisi, vol. 4, no. 2, 2015, pp. 1-13, doi:10.21657/tsd.70744.
Vancouver Günal E, Erdem H. Suluova ve Merzifon Ovaları Topraklarının Yarayışlı Demir, Bakır, Çinko ve Mangan Konsantrasyonlarının Mesafeye Bağlı Değişimi. TSD. 2015;4(2):1-13.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye