Research Article
BibTex RIS Cite

Effects of Soil and Foliar Nitrogen and Zinc Treatments on Wheat Grain Zinc and Iron Concentrations

Year 2019, Özel Sayı, 130 - 139, 24.12.2019
https://doi.org/10.21657/topraksu.655563

Abstract

This study was conducted to investigate the effects of foliar and soil nitrogen (N) and zinc (Zn) treatments

of bread wheat (Triticum aestivum cv. Adana 99) on grain nitrogen (N), zinc (Zn), iron (Fe) concentrations

and yields. This study was carried out in 4-factorial trial random plot design under greenhouse. Two different zinc (0.1 and 1 mg kg-1) and nitrogen doses (200 and 500 mg kg-1) were applied to the soil and

0%, 0.1%, 0.5% and 1% urea solutions were foliarly applied to zinc-free (-Zn) and zinc containing (+ Zn,

0.5% ZnSO4.7H2O) conditions. For foliar applications, only the flag leaf was immersed 25 seconds into

solution. Immersion of the leaves in the solutions was repeated 6 times with a single day intervals. Plants

were harvested after grains matured and grain samples were analysed for N, Zn and Fe concentrations.

Statistical analysis showed that average grain Zn concentration was increased 29% with soil applied

N and increased 40% with soil applied Zn. Foliar applied Zn increased grain Zn concentration 33%

while foliar applied urea resulted with low increases at that value. Soil applied N increased grain Fe

concentration 26% whereas soil applied Zn reduced Fe concentration 28%. Foliar applied Zn resulted

with 6% increase in grain Fe concentrations. Foliar urea application was not effective on grain Fe

concentrations. Results revealed in general that N and Zn-nutrition had significant effect on grain Zn

and Fe concentrations. When the plants were supplied with sufficient Zn, both soil and foliar nitrogen

treatments increased grain Zn concentrations. It was concluded that sufficient Zn and high N rates

promoted Zn and Fe uptake and also their re-mobilization from the vegetative tissues into grains.

References

  • Alam S, Kamei S and Kawai S (2005). Effectiveness of phytosiderophore in absorption and translocation of (59) iron in barley in the presence of plant-borne, synthetic and microbial chelators. Journal of Plant Nutrition, 28: 1709- 1722. Bouyoucos GJ (1952). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465. Caglar KO (1949). Toprak su koruma mühendisliği. Çukurova Üniversitesi Ziraat Fakültesi, Yayın No: 108, Adana. Cakmak I (2000). Possible roles of zinc in protecting plant cells from reactive oxygen species. New Phytologist, 146(2): 185–205. Cakmak I (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil, 247:3–24. Cakmak I and Engels C (1999). Role of mineral nutrients in photosynthesis and yield formation. In Z. Rengel (Ed.), Crop Nutrition (141-168). New York: The Haworth Press. Cakmak I, Pfeiffer WH and Mcclafferty B (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1): 10-20. Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H. (2004). Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science Plant Nutrition, 50: 1047-1054. Cakmak İ, Atlı M, Kaya R, Evliya H and Marschner H (1995). Association of high light and zinc deficiency in cold induced leaf chlorosis in grapefruit and mandarin trees. Journal Plant Physiol, 146: 355-360. Caputo C and Barneix AJ (1997). Export of amino acids to the phloem in relation to N supply in wheat. Physiologia Plantarum, 101(4): 853-860. Carson PL (1980). Recommended potassium test. P. 20-21. In: Recommended chemical soil test procedures for the North Central REgion. Rev. Ed. North Central. Regional Publicaton no. 221. North Dakota Agric. Exp. Stn. North Dakota State University, Fargo USA. Coşkun Y ve Öktem A (2003). Farklı Dozlarda Ve Zamanlarda Uygulanan Azotun Makarnalık Buğdayın Verim Ve Verim Unsurlarına Etkisi. HR. Ü.Z.F.Dergisi, 7 (3-4):1-10 J.Agric Fac. HR. U. 7 (3-4): 1-10. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M L, Misson J, Schikora A, Czernic P and Mari S (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1): 1–11. Çakmak, İ., 1994. Selection and characterisation of Creal genotypes with high resistance to zinc deficiency and boron toxicity and evalation of bioavailability of zinc in creals for GAP and Central Anatolia Regions. “TU-GENOTYPES” NATO Science for Stability Programme. III. Progress Report, Çukurova University, Adana Deckard EL, Joppa LR, Hammond J J, Hareland G A (1996). Grain protein determinants of the Langdon durumdiccoides chromosome substitution lines. Crop Science, 36 (6): 1513-1516. Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007). Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant, 129: 635-643. Erenoğlu EB, Kutman UB, Ceylan Y, Yıldız B and Cakmak I (2011). Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, Vol.189, No.2, 438-448 (SCI) Feil B and Fossati D (1995). Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci. 35: 1426-1431. Feller U, Fischer A (1994). Nitrogen metabolism in senescing leaves. Crit. Rev. Plant Science,13: 241–273. Grusak MA, Pearson JN, Marentes E (1999). The physiology of micronutrient homeostasis in field crops. Field Crop Research, 60: 41-56. Haydon MJ and Cobbett CS. (2007). Transporters of ligands for essential metal ions in plants. New Phytologist, 174:499-506. Hotz C and Brown KH (2004). Assessment of the risk of zinc deficiency in populations and options for its control. International Zinc Nutrition Consultative Group (IZiNCG) Technical Document -1. Hotz C and Brown KH, eds. Food and Nutrition Bulletin, 25: 91-204. Jackson ML (1959). Soil chemical analysis. Englewood Cliffs, New Jersey. Kutman UB, Yildiz B, Cakmak I (2011). Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil, 342: 149-164. Kutman UB, Yildiz B, Özturk l, Cakmak I (2010). Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 87: 1-9 Lindsay WL and Norvell WA (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42: 421-428. Marschner H (1995). Mineral nutrition of higher plants. 2nd edn. Academic Press, London. Marschner H and Romheld V (1994). Strategies of plants for acquisition of iron. Plant and Soil, 165(2): 261-274. Mıshra SS, Gulati JML, Nanda SS, Garyanak LM, Jenz SN (1989). Micronutrient Studies in Wheat. Orissa Journal Of Agriculture Research, 2(2): 94-96. Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155: 193-203. Mungan S ve Doran İ (2003). Farklı Doz ve Yöntemlerle Uygulanan Çinkonun Makarnalık Buðday ve Arpanın Verim ve Verim Unsurlarına Etkileri. Türkiye 5. Tarla Bitkileri Kongresi. 13-17 Ekim 2003. Niles BJ, Clegg MS, Hanna LA, Chou SS, Momma TY, Hong H and Keen CL (2008). Zinc deficiency-induced iron accumulation: a consequence of alterations, iron regulatory protein binding activity, iron transporters, and iron storage proteins. Journal of Biological Chemistry, 283(8): 5168- 5177. Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003). Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical Applied. Genetics. 107: 1243–1251. Olsen SR, Cole CV, Watanabe FS and Dean LA (1954). Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circ., 939. U.S. Cov. Print Office, Washington D.C. Ozturk L, Erenoğlu B, Kaya Y, Altıntas Z, Haklı E, Andi E, Yılmaz Ö (2011). Çinko'nun Buğday Tanesine Tasınmasını Etkileyen Fizyolojik Mekanizmaların Araştırılması, TÜBİTAK Projesi Sonuç Raporu, Proje No: 108T436. Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L and Cakmak I (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1-2): 57-67. Peterson CJ, Johnson VA and Mattern P J (1986). Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran and grain. Cereal Chemistry, 63(3): 183-186. Ramussen PE and Rohde CR (1989) Stubble Burning Effects On Winter Wheat Yield and Nitrogen Utilization Under Semiarid Conditions. Soils and Fertilizers October, Vol.52 No: 10, p. 1443. Rubio-Covarrubias OA, Brown PH, Weinbaum SA, Johnson RS and Cabrera RI. (2009). Evaluating foliar nitrogen compounds as indicators of nitrogen status in Prunus persica trees. Scientia Horticulturae 120(1): 27-33. Sharma PN, Chatterjee C, Agarwala SC and Sharma CP (1990). Zinc deficiency and pollen fertility in maize (Zea mays). Plant and Soil, 124(2): 221-225. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V and Zou C (2010). Influence of Long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1): 165-170. Suzuki M, Tsukamato T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S and Nishizawa NK (2008). Deoxymugineic acid increases Zn translocation in Zn-deficienct rice plants. Plant Molecular Biology, 66(6): 609- 617. Takahashi M, Terada Y, Nakai I, Nakanishİ H, Yoshimura E, Mori S and Nishizawa NK (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15: 1263-1280. Toğay Y, Toğay N, Kocakaya Z, Erdal İ ve Çığ F (2005). Van Koşullarında Çinko Uygulamasının Farklı Buğday Çeşit ve Hatlarında Verim ve Verim Öğeleri Zerine Etkisi. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül, Antalya (Araştırma Sunusu Cilt I, Sayfa 595-600) Trampczynska A, Kupper H, Meyer-Klaucke M, Schmidt H and Clemens S (2010). Nicotianamine forms complexes with Zn(II) in vivo. Metallomics 2(1): 57-66. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S and Nishizawa NK. (2009). Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): Evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiology, 50(1): 48-57. Uauy C, Brevis JC and Dubcovsky J (2006a). The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 57(11): 2785-2794. Uauy C, Distelfeld A, Fahima T, Blechl A and Dubcovsky J (2006b). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803): 1298–1301. US Salinity Laboratory Staff. (1954). Diagnosis and İmprovement of, Saline and Alkaline Soils (Ed L. A. Richards). USDA Agriculture Handbook B, No: 60, U. S. Gov. Printing Office, Washington, 160 P. Von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA and Hider RC (1999). Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiology, 119: 1107-1114. Waters BM, Chu H-H, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE and Walker E L (2006). Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141(4): 1446-1458. Waters BM, Uauy C, Dubcovsky J and Grusak MA (2009). Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274. Welch RM and Graham RD (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimantal Botany, 55: 353–364 Yang J and Zhang J (2006). Grain filling of cereals under soil drying. New Phytologist 169(2): 223-236. Yılmaz A, Ekiz H, Torun B, Aydın A, Çakmak İ (1995). Determination of zinc application methods in zinc-defficient wheat growing areas of Central Anatolia. Pp. 91-95. Soil Fertilty and Fertilizer Management 9 th İnternational Symposium of CIEC. Yılmaz A, Gültekin İ, Ekiz H ve Çakmak İ (1998). Tohuma Uygulanan Farklı Konsantrasyonlardaki Çinko Sülfatın Buğday Verimine etkilerine Belirlenmesi. I. Ulusal Çinko Kongresi, Eskişehir. Zebart BJ, Warren CJ and Sheard RW (1992). İnfluence of the rate of nitrojen fertilization on the mineral content of winter wheat in Ontario. Journal Agriculture Food Chemistry, 40: 1528- 1530.

Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi

Year 2019, Özel Sayı, 130 - 139, 24.12.2019
https://doi.org/10.21657/topraksu.655563

Abstract

Bu çalışmada, ekmeklik buğdaya (Triticum aestivum cv. Adana 99) topraktan ve yapraktan azot ve
çinko uygulamalarının tanenin azot (N), çinko (Zn), demir (Fe) konsantrasyonu ve verimi üzerine etkisi
araştırılmıştır. Söz konusu çalışma sera koşullarında, tesadüf parsellerinde 4 faktörlü faktöriyel deneme
deseninde yürütülmüştür. Topraktan uygulamada iki farklı çinko dozu (0.1 ve 1 mg kg-1) ve iki farklı
azot dozu (200 ve 500 mg kg-1) kullanılırken, yapraktan uygulamalarda çinkosuz (-Zn) ve çinkolu (+ Zn,
0.5% ZnSO4.7H2O) koşullarda %0, %0.1, %0.5 ve %1’lik üre çözeltileri kullanılmıştır. Yapraktan yapılan
uygulamalarda yalnızca bayrak yaprağı ilgili çözeltilere daldırılmış ve toplam 25 sn bekletilmiştir. Yaprak
uygulamaları birer gün arayla 6 kez yinelenmiştir. Bitkiler tane olgunluğuna ulaştıktan sonra hasat
edilmiştir. Hasat sonucu elde edilen tanelerde N, Zn ve Fe analizleri yapılmıştır.
Yapılan istatistiksel analizler sonucunda, ortalamalar bazında, topraktan N uygulaması, tane Zn
konsantrasyonunu %29, topraktan Zn uygulaması %40 oranında arttırmıştır. Yapraktan Zn uygulaması,
tane Zn konsantrasyonunu %33 oranında arttırırken, yapraktan üre uygulaması ise düşük düzeyde artış
sağlamıştır. Topraktan N uygulaması, tane Fe konsantrasyonunu %26 arttırmış, topraktan Zn uygulaması
ise %28 oranında azaltmıştır. Yapraktan Zn uygulaması tane Fe konsantrasyonunda %6’lık artış sağlamıştır.
Yapraktan üre uygulaması tane Fe konsantrasyonu üzerinde önemli bir etki yapmamıştır. Genel olarak
değerlendirildiğinde, elde edilen bulgular, bitkinin N ve Zn beslenmesinin, tanenin Zn ve Fe konsantrasyonu
üzerinde önemli bir unsur olduğunu göstermektedir. Bitki için ortama yeterince Zn sağlandığı zaman, hem
topraktan hem de yapraktan azot uygulaması ile tanenin Zn içeriği artmıştır. Sonuç olarak, yeterli Zn dozu
ile yüksek N dozu uygulamasının Zn ve Fe’in alınımı ve remobilize olmasına katkısı olmuştur.

References

  • Alam S, Kamei S and Kawai S (2005). Effectiveness of phytosiderophore in absorption and translocation of (59) iron in barley in the presence of plant-borne, synthetic and microbial chelators. Journal of Plant Nutrition, 28: 1709- 1722. Bouyoucos GJ (1952). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465. Caglar KO (1949). Toprak su koruma mühendisliği. Çukurova Üniversitesi Ziraat Fakültesi, Yayın No: 108, Adana. Cakmak I (2000). Possible roles of zinc in protecting plant cells from reactive oxygen species. New Phytologist, 146(2): 185–205. Cakmak I (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil, 247:3–24. Cakmak I and Engels C (1999). Role of mineral nutrients in photosynthesis and yield formation. In Z. Rengel (Ed.), Crop Nutrition (141-168). New York: The Haworth Press. Cakmak I, Pfeiffer WH and Mcclafferty B (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1): 10-20. Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H. (2004). Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science Plant Nutrition, 50: 1047-1054. Cakmak İ, Atlı M, Kaya R, Evliya H and Marschner H (1995). Association of high light and zinc deficiency in cold induced leaf chlorosis in grapefruit and mandarin trees. Journal Plant Physiol, 146: 355-360. Caputo C and Barneix AJ (1997). Export of amino acids to the phloem in relation to N supply in wheat. Physiologia Plantarum, 101(4): 853-860. Carson PL (1980). Recommended potassium test. P. 20-21. In: Recommended chemical soil test procedures for the North Central REgion. Rev. Ed. North Central. Regional Publicaton no. 221. North Dakota Agric. Exp. Stn. North Dakota State University, Fargo USA. Coşkun Y ve Öktem A (2003). Farklı Dozlarda Ve Zamanlarda Uygulanan Azotun Makarnalık Buğdayın Verim Ve Verim Unsurlarına Etkisi. HR. Ü.Z.F.Dergisi, 7 (3-4):1-10 J.Agric Fac. HR. U. 7 (3-4): 1-10. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M L, Misson J, Schikora A, Czernic P and Mari S (2009). Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103(1): 1–11. Çakmak, İ., 1994. Selection and characterisation of Creal genotypes with high resistance to zinc deficiency and boron toxicity and evalation of bioavailability of zinc in creals for GAP and Central Anatolia Regions. “TU-GENOTYPES” NATO Science for Stability Programme. III. Progress Report, Çukurova University, Adana Deckard EL, Joppa LR, Hammond J J, Hareland G A (1996). Grain protein determinants of the Langdon durumdiccoides chromosome substitution lines. Crop Science, 36 (6): 1513-1516. Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007). Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant, 129: 635-643. Erenoğlu EB, Kutman UB, Ceylan Y, Yıldız B and Cakmak I (2011). Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, Vol.189, No.2, 438-448 (SCI) Feil B and Fossati D (1995). Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci. 35: 1426-1431. Feller U, Fischer A (1994). Nitrogen metabolism in senescing leaves. Crit. Rev. Plant Science,13: 241–273. Grusak MA, Pearson JN, Marentes E (1999). The physiology of micronutrient homeostasis in field crops. Field Crop Research, 60: 41-56. Haydon MJ and Cobbett CS. (2007). Transporters of ligands for essential metal ions in plants. New Phytologist, 174:499-506. Hotz C and Brown KH (2004). Assessment of the risk of zinc deficiency in populations and options for its control. International Zinc Nutrition Consultative Group (IZiNCG) Technical Document -1. Hotz C and Brown KH, eds. Food and Nutrition Bulletin, 25: 91-204. Jackson ML (1959). Soil chemical analysis. Englewood Cliffs, New Jersey. Kutman UB, Yildiz B, Cakmak I (2011). Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil, 342: 149-164. Kutman UB, Yildiz B, Özturk l, Cakmak I (2010). Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chemistry, 87: 1-9 Lindsay WL and Norvell WA (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42: 421-428. Marschner H (1995). Mineral nutrition of higher plants. 2nd edn. Academic Press, London. Marschner H and Romheld V (1994). Strategies of plants for acquisition of iron. Plant and Soil, 165(2): 261-274. Mıshra SS, Gulati JML, Nanda SS, Garyanak LM, Jenz SN (1989). Micronutrient Studies in Wheat. Orissa Journal Of Agriculture Research, 2(2): 94-96. Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155: 193-203. Mungan S ve Doran İ (2003). Farklı Doz ve Yöntemlerle Uygulanan Çinkonun Makarnalık Buðday ve Arpanın Verim ve Verim Unsurlarına Etkileri. Türkiye 5. Tarla Bitkileri Kongresi. 13-17 Ekim 2003. Niles BJ, Clegg MS, Hanna LA, Chou SS, Momma TY, Hong H and Keen CL (2008). Zinc deficiency-induced iron accumulation: a consequence of alterations, iron regulatory protein binding activity, iron transporters, and iron storage proteins. Journal of Biological Chemistry, 283(8): 5168- 5177. Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003). Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical Applied. Genetics. 107: 1243–1251. Olsen SR, Cole CV, Watanabe FS and Dean LA (1954). Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circ., 939. U.S. Cov. Print Office, Washington D.C. Ozturk L, Erenoğlu B, Kaya Y, Altıntas Z, Haklı E, Andi E, Yılmaz Ö (2011). Çinko'nun Buğday Tanesine Tasınmasını Etkileyen Fizyolojik Mekanizmaların Araştırılması, TÜBİTAK Projesi Sonuç Raporu, Proje No: 108T436. Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L and Cakmak I (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 306(1-2): 57-67. Peterson CJ, Johnson VA and Mattern P J (1986). Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran and grain. Cereal Chemistry, 63(3): 183-186. Ramussen PE and Rohde CR (1989) Stubble Burning Effects On Winter Wheat Yield and Nitrogen Utilization Under Semiarid Conditions. Soils and Fertilizers October, Vol.52 No: 10, p. 1443. Rubio-Covarrubias OA, Brown PH, Weinbaum SA, Johnson RS and Cabrera RI. (2009). Evaluating foliar nitrogen compounds as indicators of nitrogen status in Prunus persica trees. Scientia Horticulturae 120(1): 27-33. Sharma PN, Chatterjee C, Agarwala SC and Sharma CP (1990). Zinc deficiency and pollen fertility in maize (Zea mays). Plant and Soil, 124(2): 221-225. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V and Zou C (2010). Influence of Long term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1): 165-170. Suzuki M, Tsukamato T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S and Nishizawa NK (2008). Deoxymugineic acid increases Zn translocation in Zn-deficienct rice plants. Plant Molecular Biology, 66(6): 609- 617. Takahashi M, Terada Y, Nakai I, Nakanishİ H, Yoshimura E, Mori S and Nishizawa NK (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15: 1263-1280. Toğay Y, Toğay N, Kocakaya Z, Erdal İ ve Çığ F (2005). Van Koşullarında Çinko Uygulamasının Farklı Buğday Çeşit ve Hatlarında Verim ve Verim Öğeleri Zerine Etkisi. Türkiye VI. Tarla Bitkileri Kongresi, 5-9 Eylül, Antalya (Araştırma Sunusu Cilt I, Sayfa 595-600) Trampczynska A, Kupper H, Meyer-Klaucke M, Schmidt H and Clemens S (2010). Nicotianamine forms complexes with Zn(II) in vivo. Metallomics 2(1): 57-66. Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S and Nishizawa NK. (2009). Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): Evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiology, 50(1): 48-57. Uauy C, Brevis JC and Dubcovsky J (2006a). The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. Journal of Experimental Botany, 57(11): 2785-2794. Uauy C, Distelfeld A, Fahima T, Blechl A and Dubcovsky J (2006b). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803): 1298–1301. US Salinity Laboratory Staff. (1954). Diagnosis and İmprovement of, Saline and Alkaline Soils (Ed L. A. Richards). USDA Agriculture Handbook B, No: 60, U. S. Gov. Printing Office, Washington, 160 P. Von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA and Hider RC (1999). Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants. Plant Physiology, 119: 1107-1114. Waters BM, Chu H-H, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE and Walker E L (2006). Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 141(4): 1446-1458. Waters BM, Uauy C, Dubcovsky J and Grusak MA (2009). Wheat (Triticum aestivum) proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany, 60(15): 4263-4274. Welch RM and Graham RD (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimantal Botany, 55: 353–364 Yang J and Zhang J (2006). Grain filling of cereals under soil drying. New Phytologist 169(2): 223-236. Yılmaz A, Ekiz H, Torun B, Aydın A, Çakmak İ (1995). Determination of zinc application methods in zinc-defficient wheat growing areas of Central Anatolia. Pp. 91-95. Soil Fertilty and Fertilizer Management 9 th İnternational Symposium of CIEC. Yılmaz A, Gültekin İ, Ekiz H ve Çakmak İ (1998). Tohuma Uygulanan Farklı Konsantrasyonlardaki Çinko Sülfatın Buğday Verimine etkilerine Belirlenmesi. I. Ulusal Çinko Kongresi, Eskişehir. Zebart BJ, Warren CJ and Sheard RW (1992). İnfluence of the rate of nitrojen fertilization on the mineral content of winter wheat in Ontario. Journal Agriculture Food Chemistry, 40: 1528- 1530.
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hatun Barut This is me 0000-0003-2482-6715

Sait Aykanat This is me 0000-0002-5690-408X

Elif Haklı Heybet This is me

Salim Eker This is me

İsmail Çakmak This is me

Publication Date December 24, 2019
Published in Issue Year 2019 Özel Sayı

Cite

APA Barut, H., Aykanat, S., Haklı Heybet, E., Eker, S., et al. (2019). Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi. Toprak Su Dergisi130-139. https://doi.org/10.21657/topraksu.655563
AMA Barut H, Aykanat S, Haklı Heybet E, Eker S, Çakmak İ. Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi. SWJ. Published online December 1, 2019:130-139. doi:10.21657/topraksu.655563
Chicago Barut, Hatun, Sait Aykanat, Elif Haklı Heybet, Salim Eker, and İsmail Çakmak. “Topraktan Ve Yapraktan Azot Ve Çinko Uygulamalarının Buğdayda Tane Çinko Ve Demir Konsantrasyonları Üzerine Etkisi”. Toprak Su Dergisi, December (December 2019), 130-39. https://doi.org/10.21657/topraksu.655563.
EndNote Barut H, Aykanat S, Haklı Heybet E, Eker S, Çakmak İ (December 1, 2019) Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi. Toprak Su Dergisi 130–139.
IEEE H. Barut, S. Aykanat, E. Haklı Heybet, S. Eker, and İ. Çakmak, “Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi”, SWJ, pp. 130–139, December 2019, doi: 10.21657/topraksu.655563.
ISNAD Barut, Hatun et al. “Topraktan Ve Yapraktan Azot Ve Çinko Uygulamalarının Buğdayda Tane Çinko Ve Demir Konsantrasyonları Üzerine Etkisi”. Toprak Su Dergisi. December 2019. 130-139. https://doi.org/10.21657/topraksu.655563.
JAMA Barut H, Aykanat S, Haklı Heybet E, Eker S, Çakmak İ. Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi. SWJ. 2019;:130–139.
MLA Barut, Hatun et al. “Topraktan Ve Yapraktan Azot Ve Çinko Uygulamalarının Buğdayda Tane Çinko Ve Demir Konsantrasyonları Üzerine Etkisi”. Toprak Su Dergisi, 2019, pp. 130-9, doi:10.21657/topraksu.655563.
Vancouver Barut H, Aykanat S, Haklı Heybet E, Eker S, Çakmak İ. Topraktan ve Yapraktan Azot ve Çinko Uygulamalarının Buğdayda Tane Çinko ve Demir Konsantrasyonları Üzerine Etkisi. SWJ. 2019:130-9.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye