Research Article
BibTex RIS Cite

Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi

Year 2021, Volume: Özel Sayı , 11 - 18, 29.01.2021
https://doi.org/10.21657/topraksu.700706

Abstract

Türkiyenin içinde bulunduğu coğrafi konum, topoğrafya, toprak özellikleri, erozyona elverişli jeomorfolojik yapı, arazi kullanımındaki değişimler ve iklim koşulları toprakların erozyona karşı duyarlılığını artırmaktadır. Bu nedenle erozyon ve onun sonucu olan sedimantasyon, toprak ve su kaynaklarıyla ilgili en önemli problemlerdendir. Balıkesir-Bigadiç Kocadere Havzasında 2009-2013 yılları arasında yürütülen bu araştırmada, alt havzada yağış, akım ve süspanse sediment ölçümlerine dayalı olarak, havza sediment veriminin belirlenmesi amaçlanmıştır. Araştırmada, 2009-2013 yıllarını kapsayan 5 yıllık ölçüm sonuçları değerlendirilmiştir. Söz konusu periyotta otomatik sediment örnekleyici ile gerçekleştirilen süspanse sediment örneklemelerine ve akım verilerine dayalı olarak havzanın sediment anahtar eğrisi çıkarılmıştır. Buna göre alt havza sediment verimi 2.11 ton ha-1 yıl-1 olarak belirlenmiştir. Aynı zamanda, havza sediment verimini tahmin etmek amacıyla MUSLE (Modified Universal Soil Loss Equation) eşitliği kullanılmıştır. Araştırma periyodu için MUSLE ile tahmin edilen sediment verimi ise 2.22 ton ha-1 yıl-1 olmuştur. MUSLE modelinin havza koşullarında uygulanabilirliği, 13 adet bireysel olay süresince arazide ölçülen sediment verisiyle test edilmiş ve elde edilen belirtme katsayısı değeri 0.92 olmuştur. Yüksek akımlar için sediment verimi tahmininde MUSLE daha iyi sonuçlar vermiştir.

Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü (TAGEM)

Project Number

UTAEM 2015-02

References

  • Anonim (2015). http://www.eie.gov.tr/eie-web / kurumsal_istatistikler / çevre_ist / hidroloji / sediment.html (Erişim Tarihi: 03.07.2015).
  • Arckhi S, Shabani A, Rostamizad G (2011). Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arab J. Geosci DOI 10.1007/s12517-010-0271-6.
  • Baade J, Liese C (2002). Accuracy of sediment yield measurements in small catchments. Erosion and Sediment Transport Measurements: Technological and Methodological Advances. Workshop in Oslo 19-21 June 2002.
  • Banasik K, Walling DE (1996). Predicting sediment graphs for a small agricultural catchment. Nordic Hyrdol. 27(4), 275- 294.
  • Barnes BS (1940). Discussion of analysis of runoff characteristics. Trans ASCE 105:106.
  • Hudson NW (1993). Field measurement of soil erosion and runoff. Food and Agriculture Organization of the United Nations.
  • Jahani I (1992). Calculating the suspenden sediment load of the Dez River. Erosion and Sediment transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, IAHSPubl. no.210.
  • Johnson CW, Gordon ND, Hanson CL (1985). Northwest Rangeland sediment yield analysis by the MUSLE. Transactions of the American Society of Agricultural Engineers, 28:1889-1895.
  • Kinnell PIA, Risse LM (1998). USLE-Mempirical modeling rainfall erosion through runoff sediment concentration. Soil Sci.Soc. Am.J. 62, 1662-1672.
  • Maddock T (1975). Table 3.2 in Sediment Engineering, V.A. Vanoni(ed.) ASCE, New York.
  • Moore I, Burch G (1986a). Physical basis of the lengthslope factor in the universal soil loss equation. Soil Science Society of America Journal 50: 1294-1298.
  • Moore I, Burch G (1986b). Modeling erosion and deposition: topographic effects. Trans of Asae 29(6): 1624- 1630, 1640.
  • Pandey A, Chowdary VM, Mal BC (2009). Sediment yield modelling of an agricultural watershed using MUSLE, romote sensing and GIS. Paddy Water Environ (2009), 7: 105-113. DOI 10.1007/s10333-009-0149-y.
  • Renard KG, Foster GR, Weesies GA, Mccool DK, Yoder DC (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Handbook No. 703. US Department of Agriculture, 404 pp.
  • Sadeghi SH (2004). application of MUSLE in prediction of sediment yield in İranian conditions. ISCO2004-13th International soil conservation organization conference-Brisbane, July 2004
  • Sadeghi SHR, Singh JK, Das G (2004). Efficacy of annual soil erosion models for storm-wise sediment prediction: a case study. Int. Agric.Engng. J.13 (1/2),1-14.
  • Sadeghi SHR, Mizuyama T (2007). Applicability of the Modified Universal Soil Loss Equation for prediction of sediment yield in Khanmirza watershed, Iran. Hydrological Sciences-Journal-des Sci. Hydrologiques, 52(5).
  • Sadeghi SHR, Mizuyama T, Ghaderi VB (2007). Comformity of MUSLE estimates and erosion plot data for storm-wise sediment yield estimation. J. Terrest. Atmos. Oceanic Sci. 18(1), 117-128.
  • Williams JR (1975). Sediment-yield prediction with Universal Soil Loss Equation using runoff energy factor.p.244-252. In: Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dep. Agr. ARS-S 40.
  • Williams JR, Berndt HD (1977). Sediment yield prediction based on watershed hydrology. Trans. Am. Soc. Agric. Engrs 20(6), 1100-1104.
  • Wischmeier WH, Smith DD (1978). Predicting Rainfall erosion Losses - A Guide for Conservatin Planning (Agricultural Handbook 537). Washington, DC: USDA.
  • Yılmaz G, Şahin Taysun K, Acar CO, Özden N, Aruğaslan L, Bilir L, Taysun A, Uysal H (2015). Kocadere Havzasinda RUSLE ile Potansiyel Toprak Erozyonunun Belirlenmesi ve Toprak Korunumunun Planlanmasi. Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü yayını (UTAEM 2015-02), (Proje Sonuç Raporu), İzmir.

Estimation of Sediment Yield Based on Field Measurements and MUSLE Model in Kocadere Watershed

Year 2021, Volume: Özel Sayı , 11 - 18, 29.01.2021
https://doi.org/10.21657/topraksu.700706

Abstract

The geographical location, topography, soil characteristics, favorable geomorphological structure to erosion, land use changes and climatic conditions of Turkey, increase soil sensitivity to erosion. Therefore, soil erosion and consequent sedimentation are the most important problems that threaten our soil and water resources. In this research conducted between the year of 2009-2013 in Balıkesir- Bigadiç-Kocadere Watershed, it is aimed to determined sediment yield based on the rainfall, runoff and suspended sediment measurements in subwatershed. 5 year measurement results covering the years 2009-2013 were evaluated in the research. Sediment rating curve of the watershed  has been derived from flow rate and suspended sediment measured with automatic sediment sampler at the subwatershed. With reference to this, annual average sediment yield of subwatershed was 2.11 ton ha-1 yıl-1. At the same time, in order to estimate of watershed sediment yield, MUSLE (Modified Universal Soil Loss Equation) equation was used. Sediment yield estimated by MUSLE for the research period was 2.22 ton ha-1 yıl-1. The applicability of the MUSLE model under watershed conditions was tested with sediment data measured in the field during 13 individual events and obtained coefficient of determination was 0.92. MUSLE gave better results in predicting sediment yield for high storms.

Project Number

UTAEM 2015-02

References

  • Anonim (2015). http://www.eie.gov.tr/eie-web / kurumsal_istatistikler / çevre_ist / hidroloji / sediment.html (Erişim Tarihi: 03.07.2015).
  • Arckhi S, Shabani A, Rostamizad G (2011). Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arab J. Geosci DOI 10.1007/s12517-010-0271-6.
  • Baade J, Liese C (2002). Accuracy of sediment yield measurements in small catchments. Erosion and Sediment Transport Measurements: Technological and Methodological Advances. Workshop in Oslo 19-21 June 2002.
  • Banasik K, Walling DE (1996). Predicting sediment graphs for a small agricultural catchment. Nordic Hyrdol. 27(4), 275- 294.
  • Barnes BS (1940). Discussion of analysis of runoff characteristics. Trans ASCE 105:106.
  • Hudson NW (1993). Field measurement of soil erosion and runoff. Food and Agriculture Organization of the United Nations.
  • Jahani I (1992). Calculating the suspenden sediment load of the Dez River. Erosion and Sediment transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, IAHSPubl. no.210.
  • Johnson CW, Gordon ND, Hanson CL (1985). Northwest Rangeland sediment yield analysis by the MUSLE. Transactions of the American Society of Agricultural Engineers, 28:1889-1895.
  • Kinnell PIA, Risse LM (1998). USLE-Mempirical modeling rainfall erosion through runoff sediment concentration. Soil Sci.Soc. Am.J. 62, 1662-1672.
  • Maddock T (1975). Table 3.2 in Sediment Engineering, V.A. Vanoni(ed.) ASCE, New York.
  • Moore I, Burch G (1986a). Physical basis of the lengthslope factor in the universal soil loss equation. Soil Science Society of America Journal 50: 1294-1298.
  • Moore I, Burch G (1986b). Modeling erosion and deposition: topographic effects. Trans of Asae 29(6): 1624- 1630, 1640.
  • Pandey A, Chowdary VM, Mal BC (2009). Sediment yield modelling of an agricultural watershed using MUSLE, romote sensing and GIS. Paddy Water Environ (2009), 7: 105-113. DOI 10.1007/s10333-009-0149-y.
  • Renard KG, Foster GR, Weesies GA, Mccool DK, Yoder DC (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Handbook No. 703. US Department of Agriculture, 404 pp.
  • Sadeghi SH (2004). application of MUSLE in prediction of sediment yield in İranian conditions. ISCO2004-13th International soil conservation organization conference-Brisbane, July 2004
  • Sadeghi SHR, Singh JK, Das G (2004). Efficacy of annual soil erosion models for storm-wise sediment prediction: a case study. Int. Agric.Engng. J.13 (1/2),1-14.
  • Sadeghi SHR, Mizuyama T (2007). Applicability of the Modified Universal Soil Loss Equation for prediction of sediment yield in Khanmirza watershed, Iran. Hydrological Sciences-Journal-des Sci. Hydrologiques, 52(5).
  • Sadeghi SHR, Mizuyama T, Ghaderi VB (2007). Comformity of MUSLE estimates and erosion plot data for storm-wise sediment yield estimation. J. Terrest. Atmos. Oceanic Sci. 18(1), 117-128.
  • Williams JR (1975). Sediment-yield prediction with Universal Soil Loss Equation using runoff energy factor.p.244-252. In: Present and Prospective Technology for Predicting Sediment Yield and Sources. U.S. Dep. Agr. ARS-S 40.
  • Williams JR, Berndt HD (1977). Sediment yield prediction based on watershed hydrology. Trans. Am. Soc. Agric. Engrs 20(6), 1100-1104.
  • Wischmeier WH, Smith DD (1978). Predicting Rainfall erosion Losses - A Guide for Conservatin Planning (Agricultural Handbook 537). Washington, DC: USDA.
  • Yılmaz G, Şahin Taysun K, Acar CO, Özden N, Aruğaslan L, Bilir L, Taysun A, Uysal H (2015). Kocadere Havzasinda RUSLE ile Potansiyel Toprak Erozyonunun Belirlenmesi ve Toprak Korunumunun Planlanmasi. Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü yayını (UTAEM 2015-02), (Proje Sonuç Raporu), İzmir.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gülay Yılmaz 0000-0002-7932-1565

Lutfullah Aruğaslan This is me 0000-0002-6345-2771

Gözen Yüceerim This is me 0000-0002-8769-3422

Project Number UTAEM 2015-02
Publication Date January 29, 2021
Published in Issue Year 2021 Volume: Özel Sayı

Cite

APA Yılmaz, G., Aruğaslan, L., & Yüceerim, G. (2021). Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi. Toprak Su Dergisi, Özel Sayı, 11-18. https://doi.org/10.21657/topraksu.700706
AMA Yılmaz G, Aruğaslan L, Yüceerim G. Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi. SWJ. January 2021;Özel Sayı:11-18. doi:10.21657/topraksu.700706
Chicago Yılmaz, Gülay, Lutfullah Aruğaslan, and Gözen Yüceerim. “Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine Ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi”. Toprak Su Dergisi Özel Sayı, January (January 2021): 11-18. https://doi.org/10.21657/topraksu.700706.
EndNote Yılmaz G, Aruğaslan L, Yüceerim G (January 1, 2021) Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi. Toprak Su Dergisi Özel Sayı 11–18.
IEEE G. Yılmaz, L. Aruğaslan, and G. Yüceerim, “Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi”, SWJ, vol. Özel Sayı, pp. 11–18, 2021, doi: 10.21657/topraksu.700706.
ISNAD Yılmaz, Gülay et al. “Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine Ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi”. Toprak Su Dergisi ÖZEL SAYI (January 2021), 11-18. https://doi.org/10.21657/topraksu.700706.
JAMA Yılmaz G, Aruğaslan L, Yüceerim G. Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi. SWJ. 2021;Özel Sayı:11–18.
MLA Yılmaz, Gülay et al. “Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine Ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi”. Toprak Su Dergisi, vol. Özel Sayı, 2021, pp. 11-18, doi:10.21657/topraksu.700706.
Vancouver Yılmaz G, Aruğaslan L, Yüceerim G. Kocadere Havzasında Sediment Veriminin Arazi Ölçümlerine ve MUSLE Modeline Dayalı Olarak Tahmin Edilmesi. SWJ. 2021;Özel Sayı:11-8.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye