Research Article
BibTex RIS Cite

Farklı Yağış Yoğunluğu Altında Geçirimsiz Toprakta Akış ve Sediment Simülasyonu

Year 2021, Volume: Özel Sayı , 46 - 55, 29.01.2021
https://doi.org/10.21657/topraksu.700846

Abstract

Yağış yoğunluğu ve toprak geçirimsizliğinin, yüzey akış oluşumu ve toprak erozyonunu üzerine etkileri tam olarak anlaşılamamıştır. Bu iki faktör yüzey akışı ve ilişkili olarak sedimenti etkilemektedir. Bu çalışmada, farklı hidrofobiklik seviyeleri altında ve aynı zamanda farklı yapay yağış yoğunluklarına göre yüzey akış ve sediment verimini simüle etmek için “Advanced Hydrological Investigations (AHI)” adlı fiziksel bir model kullanılmıştır. Kumlu tınlı bünyeye sahip bir toprak, beş derece hidrofobiklik elde etmek için farklı yoğunluklarda stearik asit kullanılarak yapay olarak hidrofobikleştirilmiştir. Öte yandan, modelde beş yağış yoğunluğu seviyesi yapay bir yağış olarak kabul edilmiş ve 25 uygulama test edilmiştir. Sonuçlar hidrofibiklik arttığında, yüzey akış hacminde artış, sediment veriminde, derine süzülmede ve suyun havzada toplanma süresinde azalma olduğunu göstermiştir. Ayrıca, toprak geçirimsizlik seviyesinin yükselmesi sediment veriminin düşmesine neden olmuştur. Kontrol konusu ile karşılaştırıldığında(6,5 gr toprak kaybı), aşırı geçirimsiz topraktan 80 litre/saat yağış yoğunluğu altında 2 gr toprak kaybı olmuştur. Hidrofobik toprakta tortu azalmasının olası açıklaması, organik madde içeriği ile pozitif olarak ilişkili olan hidrofobik işlemlerde agrega stabilitesi olabilir.Yüksek derecede geçirimsiz topraklardaki sediment azalması, kurak ve yarı kurak bölgelerde toprak yönetimi politikası olarak düşünülebilir.

References

  • 1. Bisdom, E. B. A., Dekker, L. W., Schoute, J. F. T., 1993, Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure, Geoderma, 56, 105 – 118.
  • 2. Chen , H., Zhang, X., Abla , M., Lü, D., Yan, R., Ren, Q., Ren, Z., Yang, Y., Zhao, W., Lin, P., Liu, B., Yang, X., 2018, Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China, Catena 170, 141–149.
  • 3. Da Silva, R. M., R. M., Guimarães Santos, C. A., dos Santos, Y. G., 2017, Evaluation and modeling of runoff and sediment yield for different land covers under simulated rain in a semiarid region of Brazil, International Journal of Sediment Research, http://dx.doi.org/10.1016/j.ijsrc.2017.04.005.
  • 4. Dekker, L. W., Jungerius, P. D., 1990, Water repellency in the dunes with special reference to the Netherlands, Catena Suppl., 18, 173–183.
  • 5. Dekker, L. W., Oostindie, K., and Ritsema, C. J., 2005, Exponential increase of publications related to soil water repellency, Aust. J. Soil Res., 43, 403– 441.
  • 6. De Lima, J.L.M.P., 1990. The effect of oblique rain on inclined surfaces: a nomograph for the rain-gauge correction factor. J. Hydrol. 115 (1–4), 407–412.
  • 7. De Lima, J.L.M.P., van Dijk, P.M., Spaan, W.P., 1992. Splash-saltation transport underwind-driven rain. Soil Technol. 5 (2), 151–166.
  • 8. De Lima, J.L.M.P., Singh, V.P., 2003. Laboratory experiments on the influence of storm movement on overland flow. Phys. Chem. Earth 28, 277–282.
  • 9. De Lima, J.L.M.P., Singh, V.P., de Lima, M.I.P., 2003. The influence of storm movement on water erosion: storm direction and velocity effects. CATENA 52 (1), 39–56.
  • 10. De Lima, J.L.M.P., Tavares, P., Singh, V.P., de Lima, M.I.P., 2009. Investigating the nonlinear response of soil loss to storm direction using a circular soil flume. Geoderma 152 (1–2), 9–15.
  • 11. Deng, Y., Dixon, JB. , 2002, Soil organic matter and organic–mineral interactions. In Soil Mineralogy with Environmental Applications, Edited by: Dixon, JB and Schulze, DG. 69–107. Madison: Soil Science Society of America. SSSA Book Series No. 7
  • 12. Doerr, S. H., and Thomas, A. D., 2000, the role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal, J. Hydrol., 231– 232, 134– 147.
  • 13. Dos Santos, J.C.N., de Andrade, E.M., Medeiros, P.H.A., Guerreiro, M.J.S., de Queiroz Palácio, H.A., 2017. Effect of rainfall characteristics on runoff and water erosion for different land uses in a tropical semiarid region. Water Resour. Manag. 31 (1), 173–185.
  • 14. Frasier, G.W., Trlica, M.J., Leininger,W.C., Pearce, R.A., Fernald, A., 1998. Runoff from simulated rainfall in 2 montane riparian communities. J. Range Manag. 51, 315–322.
  • 15. Gao, y., Lin, Q., Liu, H.,Wu, H., Alamus, 2018, Water repellency as conditioned by physical and chemical parameters in grassland soil, Catena 160, 310–320.
  • 16. Gomi, T., Sidle, R.C., Ueno, M.,Miyata, S., Kosugi, K., 2008. Characteristics of overland flow generation on steep forested hillslopes of central Japan. J. Hydrol. 361, 275–290.
  • 17. Igwe, C.A., O.N. Udegbuhnam, 2008. Soil properties influencing water-dispersible clay and silt in an Ultisol in southern Nigeria. International Agrophysics, 2; 319-325.
  • 18. Jeyakumar, P., Müller, K., Deurer, M., Dijssel, C., Mason, K., Le Mir, G., Clothier, B., 2014, A novel approach to quantify the impact of soil water repellency on run-off and solute loss, Geoderma 221–222, 121–130.
  • 19. Jungerius, P. D., ten Harkel, M. J., 1994, The effect of rainfall intensity on surface runoff and sediment yield in the grey dunes along the Dutch coast under conditions of limited rainfall acceptance, CATENA 23(3-4), 269-279.
  • 20. Khaleghpanah, N., Shorafa, M., Asadi, H., Gorji, M., & Davari, M. 2016. Modeling soil loss at plot scale with EUROSEM and RUSLE2 at stony soils of Khamesan watershed, Iran. Catena, 147, 773–788.
  • 21. King, P.M., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust. J. Soil Res. 19, 275–285.
  • 22. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrol. Process. 21, 2356–2364.
  • 23. Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A.,Walsh, R.P.D., 2007. Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soil. Hydrol. Process. 21, 2337–2345.
  • 24. Miyata, S., Kosugi, K.i, Gomi, T., Onda, Y., Mizuyama, T., 2007. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrol. Process. 21, 2365–2376.
  • 25. Mohammadi. S., Homaee. M., Sadeghi. S. H. R., 2018, Runoff and sediment behavior from soil plots contaminated with kerosene and gasoil, Soil & Tillage Research 182; 1–9
  • 26. Mojiri, H. and Aliofkhazraei, M., 2017, Effect of Surface Roughness on Wetting Properties, Comprehensive Materials Finishing (3), 276–305.
  • 27. Müllera, K., Masonb, K., Gastelum Strozzic, A., Simpsonb, R., Komatsud, T., Kawamotod, R., Clothier, B., Runoff and nutrient loss from a water-repellent soil. 2018. Geoderma 322, 28–37
  • 28. Peng, T., Wang, S., 2012. Effects of land use, land cover and rainfall types on the surface runoff and soil loss on karst slopes in southwest China. Catena 90, 53–62.
  • 29. Ran, Q., Su, D., li, P., HE, Z., 2012, Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion, J. Hydrol. 424–425 99–111.
  • 30. Sadeghi, S.H.R., M. Moatamednia and M. Behzadfar. 2011. Spatial and Temporal Variation in the Rainfall Erosivty Factor in Iran. Journal of Agricultural Science and Technology, 13: 451-464.
  • 31. Wei, W., Jia, F., Yang, L., Chen, L., Zhang, H., Yu, Y., 2014. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. J. Hydrol. 513, 115–126.
  • 32. Witter, J. V., Jungerius, P. D., ten Harkel, M. J., 1991, Modelling water erosion and the impact of water repellency, CATENA 18(2), 115-124.
  • 33. Zhang, S., Lourenço, S. D. N., J. Cleall, P., Chui, T. F. M., K.Y.Ng, A., W.Millis, S., 2017, Hydrologic behavior of model slopes with synthetic water repellent soils. J. Hydrol. (554), 582-599.
  • 34. Zheng. S., Lourenço, S.D.N., Cleall P. J., Ng, A. K.Y. 2019. Erodibility of synthetic water repellent granular materials: Adapting the ground to weather extremes. Science of the Total Environment, 689: 398-412.
  • 35. Rengasamy, P., R. S. B. Greene, G.W. Ford and A. H. Mehanni. 1984. Identification of dispersive behaviour and the management of red-brown earths. Aust. J. Soil Res. 22: 413-431.
  • 36. Loveday, J. (Ed.) (1974~).M ethods for analysis of irrigated soils. Commw. Bur. Soils Tech. Commun. No. 54.
  • 37. Kořenková, L. & Matúš, P. 2015. Role of Water Repellency in Aggregate Stability of Cultivated Soils under Simulated Raindrop Impact .Eurasian Soil Sc. 48(7): 754-758.
  • 38. Legout. C., Leguédois. S, and Le Bissonnais. Y. 2005. Aggre_gate breakdown dynamics under rainfall compared with aggregate stability measurements, Eur. J. Soil Sci. 56, 225–237.

Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity

Year 2021, Volume: Özel Sayı , 46 - 55, 29.01.2021
https://doi.org/10.21657/topraksu.700846

Abstract

The impact of rainfall intensity and soil water repellence (SWR) on runoff generation and soil erosion are not fully understood. These two factors affect runoff and the related sediment. In this paper, a physical model, “Advanced Hydrological Investigations” (AHI) was employed to simulate runoff and sediment yield under different degree of hydrophobicity level also in respect with different artificial rainfall intensities. A sandy loam soil was artificially hydrophobized using different concentration of stearic acid to achieve five degrees of repellence (hydrophilic as the control). On the other hand, these five levels of artificial rainfall intensity were considered as an artificial rainfall in the  model and finally 25 treatments were tested. The results showed an increase in runoff volume, decrease in sediment yield, and decrease in deep percolation volume and decrease in time of concentration by increasing hydrophobicity. The higher SWR level, the lower sediment yield. It was recorded 2 gr soil loss in extreme repellent soil under 80 l/h rainfall intensity in compare with control treatment of this situation (6.5 gr soil loss). Possible explanation of sediment reduction in hydrophobic soil, could be aggregate stability in hydrophobic treatments which is positively related with organic matter content. Sediment reduction in higher degree of SWR could be considered as soil management policy in arid and semi-arid region.

References

  • 1. Bisdom, E. B. A., Dekker, L. W., Schoute, J. F. T., 1993, Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure, Geoderma, 56, 105 – 118.
  • 2. Chen , H., Zhang, X., Abla , M., Lü, D., Yan, R., Ren, Q., Ren, Z., Yang, Y., Zhao, W., Lin, P., Liu, B., Yang, X., 2018, Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China, Catena 170, 141–149.
  • 3. Da Silva, R. M., R. M., Guimarães Santos, C. A., dos Santos, Y. G., 2017, Evaluation and modeling of runoff and sediment yield for different land covers under simulated rain in a semiarid region of Brazil, International Journal of Sediment Research, http://dx.doi.org/10.1016/j.ijsrc.2017.04.005.
  • 4. Dekker, L. W., Jungerius, P. D., 1990, Water repellency in the dunes with special reference to the Netherlands, Catena Suppl., 18, 173–183.
  • 5. Dekker, L. W., Oostindie, K., and Ritsema, C. J., 2005, Exponential increase of publications related to soil water repellency, Aust. J. Soil Res., 43, 403– 441.
  • 6. De Lima, J.L.M.P., 1990. The effect of oblique rain on inclined surfaces: a nomograph for the rain-gauge correction factor. J. Hydrol. 115 (1–4), 407–412.
  • 7. De Lima, J.L.M.P., van Dijk, P.M., Spaan, W.P., 1992. Splash-saltation transport underwind-driven rain. Soil Technol. 5 (2), 151–166.
  • 8. De Lima, J.L.M.P., Singh, V.P., 2003. Laboratory experiments on the influence of storm movement on overland flow. Phys. Chem. Earth 28, 277–282.
  • 9. De Lima, J.L.M.P., Singh, V.P., de Lima, M.I.P., 2003. The influence of storm movement on water erosion: storm direction and velocity effects. CATENA 52 (1), 39–56.
  • 10. De Lima, J.L.M.P., Tavares, P., Singh, V.P., de Lima, M.I.P., 2009. Investigating the nonlinear response of soil loss to storm direction using a circular soil flume. Geoderma 152 (1–2), 9–15.
  • 11. Deng, Y., Dixon, JB. , 2002, Soil organic matter and organic–mineral interactions. In Soil Mineralogy with Environmental Applications, Edited by: Dixon, JB and Schulze, DG. 69–107. Madison: Soil Science Society of America. SSSA Book Series No. 7
  • 12. Doerr, S. H., and Thomas, A. D., 2000, the role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal, J. Hydrol., 231– 232, 134– 147.
  • 13. Dos Santos, J.C.N., de Andrade, E.M., Medeiros, P.H.A., Guerreiro, M.J.S., de Queiroz Palácio, H.A., 2017. Effect of rainfall characteristics on runoff and water erosion for different land uses in a tropical semiarid region. Water Resour. Manag. 31 (1), 173–185.
  • 14. Frasier, G.W., Trlica, M.J., Leininger,W.C., Pearce, R.A., Fernald, A., 1998. Runoff from simulated rainfall in 2 montane riparian communities. J. Range Manag. 51, 315–322.
  • 15. Gao, y., Lin, Q., Liu, H.,Wu, H., Alamus, 2018, Water repellency as conditioned by physical and chemical parameters in grassland soil, Catena 160, 310–320.
  • 16. Gomi, T., Sidle, R.C., Ueno, M.,Miyata, S., Kosugi, K., 2008. Characteristics of overland flow generation on steep forested hillslopes of central Japan. J. Hydrol. 361, 275–290.
  • 17. Igwe, C.A., O.N. Udegbuhnam, 2008. Soil properties influencing water-dispersible clay and silt in an Ultisol in southern Nigeria. International Agrophysics, 2; 319-325.
  • 18. Jeyakumar, P., Müller, K., Deurer, M., Dijssel, C., Mason, K., Le Mir, G., Clothier, B., 2014, A novel approach to quantify the impact of soil water repellency on run-off and solute loss, Geoderma 221–222, 121–130.
  • 19. Jungerius, P. D., ten Harkel, M. J., 1994, The effect of rainfall intensity on surface runoff and sediment yield in the grey dunes along the Dutch coast under conditions of limited rainfall acceptance, CATENA 23(3-4), 269-279.
  • 20. Khaleghpanah, N., Shorafa, M., Asadi, H., Gorji, M., & Davari, M. 2016. Modeling soil loss at plot scale with EUROSEM and RUSLE2 at stony soils of Khamesan watershed, Iran. Catena, 147, 773–788.
  • 21. King, P.M., 1981. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust. J. Soil Res. 19, 275–285.
  • 22. Kobayashi, M., Shimizu, T., 2007. Soil water repellency in a Japanese cypress plantation restricts increases in soil water storage during rainfall events. Hydrol. Process. 21, 2356–2364.
  • 23. Leighton-Boyce, G., Doerr, S.H., Shakesby, R.A.,Walsh, R.P.D., 2007. Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on in situ soil. Hydrol. Process. 21, 2337–2345.
  • 24. Miyata, S., Kosugi, K.i, Gomi, T., Onda, Y., Mizuyama, T., 2007. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrol. Process. 21, 2365–2376.
  • 25. Mohammadi. S., Homaee. M., Sadeghi. S. H. R., 2018, Runoff and sediment behavior from soil plots contaminated with kerosene and gasoil, Soil & Tillage Research 182; 1–9
  • 26. Mojiri, H. and Aliofkhazraei, M., 2017, Effect of Surface Roughness on Wetting Properties, Comprehensive Materials Finishing (3), 276–305.
  • 27. Müllera, K., Masonb, K., Gastelum Strozzic, A., Simpsonb, R., Komatsud, T., Kawamotod, R., Clothier, B., Runoff and nutrient loss from a water-repellent soil. 2018. Geoderma 322, 28–37
  • 28. Peng, T., Wang, S., 2012. Effects of land use, land cover and rainfall types on the surface runoff and soil loss on karst slopes in southwest China. Catena 90, 53–62.
  • 29. Ran, Q., Su, D., li, P., HE, Z., 2012, Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion, J. Hydrol. 424–425 99–111.
  • 30. Sadeghi, S.H.R., M. Moatamednia and M. Behzadfar. 2011. Spatial and Temporal Variation in the Rainfall Erosivty Factor in Iran. Journal of Agricultural Science and Technology, 13: 451-464.
  • 31. Wei, W., Jia, F., Yang, L., Chen, L., Zhang, H., Yu, Y., 2014. Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China. J. Hydrol. 513, 115–126.
  • 32. Witter, J. V., Jungerius, P. D., ten Harkel, M. J., 1991, Modelling water erosion and the impact of water repellency, CATENA 18(2), 115-124.
  • 33. Zhang, S., Lourenço, S. D. N., J. Cleall, P., Chui, T. F. M., K.Y.Ng, A., W.Millis, S., 2017, Hydrologic behavior of model slopes with synthetic water repellent soils. J. Hydrol. (554), 582-599.
  • 34. Zheng. S., Lourenço, S.D.N., Cleall P. J., Ng, A. K.Y. 2019. Erodibility of synthetic water repellent granular materials: Adapting the ground to weather extremes. Science of the Total Environment, 689: 398-412.
  • 35. Rengasamy, P., R. S. B. Greene, G.W. Ford and A. H. Mehanni. 1984. Identification of dispersive behaviour and the management of red-brown earths. Aust. J. Soil Res. 22: 413-431.
  • 36. Loveday, J. (Ed.) (1974~).M ethods for analysis of irrigated soils. Commw. Bur. Soils Tech. Commun. No. 54.
  • 37. Kořenková, L. & Matúš, P. 2015. Role of Water Repellency in Aggregate Stability of Cultivated Soils under Simulated Raindrop Impact .Eurasian Soil Sc. 48(7): 754-758.
  • 38. Legout. C., Leguédois. S, and Le Bissonnais. Y. 2005. Aggre_gate breakdown dynamics under rainfall compared with aggregate stability measurements, Eur. J. Soil Sci. 56, 225–237.
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Reyhanehsadat Mousavizadeh This is me

Sayyed Hassan Tabatabaeı

Negar Nourmahnad This is me

Sinan Aras

Publication Date January 29, 2021
Published in Issue Year 2021 Volume: Özel Sayı

Cite

APA Mousavizadeh, R., Tabatabaeı, S. H., Nourmahnad, N., Aras, S. (2021). Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity. Toprak Su Dergisi, Özel Sayı, 46-55. https://doi.org/10.21657/topraksu.700846
AMA Mousavizadeh R, Tabatabaeı SH, Nourmahnad N, Aras S. Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity. TSD. January 2021;Özel Sayı:46-55. doi:10.21657/topraksu.700846
Chicago Mousavizadeh, Reyhanehsadat, Sayyed Hassan Tabatabaeı, Negar Nourmahnad, and Sinan Aras. “Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity”. Toprak Su Dergisi Özel Sayı, January (January 2021): 46-55. https://doi.org/10.21657/topraksu.700846.
EndNote Mousavizadeh R, Tabatabaeı SH, Nourmahnad N, Aras S (January 1, 2021) Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity. Toprak Su Dergisi Özel Sayı 46–55.
IEEE R. Mousavizadeh, S. H. Tabatabaeı, N. Nourmahnad, and S. Aras, “Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity”, TSD, vol. Özel Sayı, pp. 46–55, 2021, doi: 10.21657/topraksu.700846.
ISNAD Mousavizadeh, Reyhanehsadat et al. “Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity”. Toprak Su Dergisi ÖZEL SAYI (January 2021), 46-55. https://doi.org/10.21657/topraksu.700846.
JAMA Mousavizadeh R, Tabatabaeı SH, Nourmahnad N, Aras S. Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity. TSD. 2021;Özel Sayı:46–55.
MLA Mousavizadeh, Reyhanehsadat et al. “Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity”. Toprak Su Dergisi, vol. Özel Sayı, 2021, pp. 46-55, doi:10.21657/topraksu.700846.
Vancouver Mousavizadeh R, Tabatabaeı SH, Nourmahnad N, Aras S. Simulation of Runoff and Sediment in a Water Repellent Soil under Different Rainfall Intensity. TSD. 2021;Özel Sayı:46-55.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye