BibTex RIS Cite

-

Year 2015, Volume: 22 Issue: 1, 22 - 28, 10.04.2015

Abstract

Aim: This study aims at examining the differences between thermoluminescense dosimeters and metal oxide semiconductor field effect transistors in terms of radiation doses at different photon energies treatment area dependence in patients who recieved radiotherapy at the Department of Radiation Oncology, İnönü University. Material and Methods: Thermoluminescense dosimeter systems and metal oxide semiconductor fıeld effect transistors were used at 6MV and 25MV in the range of 25-1000 cGy radiation doses to examine radiation dose dependence. Results were evaluated by taking measurements of treatment areas 5x5, 10x10, 15x15, 20x20, 25x25, 30x30, and 40x40 cm², respectively, to specify treatment area dependence of these systems. Results: In both thermoluminescense dosimeters (TLD) and metal oxide semiconductor field effect transistors (MOSFET), reading values at 6 MV and 25 MV photon energies remained up to 800 cGy. We observed that both systems deviate from linearity at doses above 800 cGy. In TLDs, we recorded a %±1 (6 MV photon energy) and %+4 (25 MV photon energy) change in reading values. This change was %±1 (6 MV photon energy) and %+4 (25 MV photon energy) in MOSFETs. Conclusion: Both dosimeter systems have advantages and disadvantages in terms of accuracy and applicability. Being familiar with dosimeter systems is very important in identifying the accuracy of dose to be admisnistered

References

  • International Commision on Radiation Units and Measurements (ICRU). .Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures, report 24. Washington, DC: ICRU Publications; 1976.
  • International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50) Bethesda: ICRU 62;1999.
  • Millwalter JC, Macleod SA, Thwaites ID. In vivo semiconductor dosimetry as part of routine quality assurance. The British Journal of Radiology 1998;71:661-8.
  • Lambert GD, Liversage WE, Hirst AM, Doughty D. Exit dose studies in megavoltage photon therapy. British Journal of Radiology 1983;56:329-34.
  • Ghitulescu Z, Stochioiu A, Dumitranche M. Dose measurements in teletherapy using thermoluminescent dosimeters. Romanian Report in Physics 2011;63(3):700-6.
  • Dam DV, Marinello G. Methods for in vivo dosimetry in external radiotherapy. In: Vivo dosimetry booklet. Belgium: Estro; 2006.
  • Huyskens DP, Bogaerts R, Verstraete J, Loof M, Nystrom H, Fiorino C, et al. Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams. In: ESTRO booklet. Brussels: ESTRO 2001.
  • Khan FM. The Physics of Radiation Therapy. Minneapolis, third edition Minnesota 2003:144-8.
  • McKinlay AF, Aypar A, Akın E. Termolüminescence Dosimetry Medical Physics Handbook. Techno house , Redcliffe Way, Bristol, 1981:1-150.
  • Bandjade DP, Aloysıus T et al. Entrance dose measurement: a sımple and reliable technicque. Med Dosim. 2003;28(2):73-8.
  • Alecu R, Loomis T Alecu, J, Ochran T. Guidelınes on the İmplementation of diode İn vivo dosimetry programs for photon and electron external beam therapy. Medical Dosimetry 1999;24:5–12.
  • Marrazzo L, Pallotta S, Klosowski M et al. Clinical tests of large area thermoluminescent detectors under radiotherapy beams. Radiation Measurements 2013;51:25-30.
  • Rajesh A. Kinhikar, Vedang Murthy, VineetaGoel et al. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Applied Radiation and Isotopes 2009;67:1683–5.
  • Adebayo AM, Zaccheaus IA, Onoriode AM, Chibuzo MB. Entrance radiation dose determination for selected cancer patients at the Lagos University Teaching Hospital Nigeria, Radiography 2013;19:113-6.
  • Vu TTH, Nguyen TQH, Nguyen NL, Le VV. Preparation and characteristics of LiF: Mg, Cu, Na, Si thermoluminescent material. VNU Journal of Science 2007;23:225-31.
  • Attix FH. Introduction to radiological physics and radiation dosimetry. New York: A Wiley-Interscience Publication; 1986;396-7.
  • Troncalli AJ, Chapman J. TLD linearity vs. beam energy and modality, Medical Dosimetry 2002;27:295-6.

A Comparative Study of Radiation Doses and Treatment Area Dependence in Thermoluminescence Dosimetry Systems and Metal Oxide Semiconductor Field Effect Transistors / Radyasyon Dozu ve Tedavi Alanı Bağımlılıklarının Termolüminesans Dozimetre Sistemleri ve

Year 2015, Volume: 22 Issue: 1, 22 - 28, 10.04.2015

Abstract

Abstract

Aim: This study aims at examining the differences between thermoluminescense dosimeters and metal oxide semiconductor field effect transistors in terms of radiation doses at different photon energies treatment area dependence in patients who recieved radiotherapy at the Department of Radiation Oncology, İnönü University.

Material and Methods: Thermoluminescense dosimeter systems and metal oxide semiconductor fıeld effect transistors were used at 6MV and 25MV in the range of 25-1000 cGy radiation doses to examine radiation dose dependence. Results were evaluated by taking measurements of treatment areas 5x5, 10x10, 15x15, 20x20, 25x25, 30x30, and 40x40 cm², respectively, to specify treatment area dependence of these systems.

Results: In both thermoluminescense dosimeters (TLD) and metal oxide semiconductor field effect transistors (MOSFET), reading values at 6 MV and 25 MV photon energies remained up to 800 cGy. We observed that both systems deviate from linearity at doses above 800 cGy. In TLDs, we recorded a %±1 (6 MV photon energy) and %+4 (25 MV photon energy) change in reading values. This change was %±1 (6 MV photon energy) and %+4 (25 MV photon energy) in MOSFETs.

Conclusion: Both dosimeter systems have advantages and disadvantages in terms of accuracy and applicability. Being familiar with dosimeter systems is very important in identifying the accuracy of dose to be admisnistered.

Key Words: Radiotherapy; Invivo dosimeter; Thermoluminescense Dosimeter; Metal oxide semiconductor fıeld effect transistor; Linear accelerator.

 Özet

Amaç: Bu çalışmada, radyoterapi alan hastaların giriş dozunun belirlenmesi için İnönü Üniversitesi Tıp Fakültesi Radyasyon Onkolojisi Anabilim Dalı’nda kullanılan in vivo dozimetre sistemlerinin farklı foton enerjilerinde radyasyon dozu ve tedavi alanına bağımlılıklarının incelenmesi amaçlanmıştır.

Gereç ve Yöntemler: Çalışmada termolüminesans dozimetre ve metal oksit yarıiletken alan etkili transistör invivo dozimetre sistemleri ile lineer hızlandırıcı cihazının 6 MV ve 25 MV foton enerjileri kullanılmıştır. Dozimetre sistemlerinin radyasyon dozu bağımlılığının incelenmesi için 25-1000 cGy radyasyon dozu aralığında ışınlamalar yapılmıştır. Sistemlerin tedavi alanına bağımlılığının belirlenmesi için ise sırasıyla 5x5, 10x10, 15x15, 20x20, 25x25, 30x30, 40x40 cm2’lik tedavi alanlarında ölçümler alınarak sonuçlar değerlendirilmiştir.

Bulgular: 6 MV ve 25 MV foton enerjilerinde artan radyasyon doz değerlerine bağlı okuma değerleri değişimi metal oksit yarıiletken alan etkili transistör dozimetre sisteminde lineer iken, temolüminesans dozimetrede 800 cGy’e kadar lineer, 800 cGy’den sonra ise lineerlikten saptığı gözlenmiştir. Artan tedavi alanı boyutuna bağlı okuma değerleri değişimi ise temolüminesans dozimetrelerde 6 MV foton enerjisi için %±1, 25 MV foton enerjisi için %+4 değerindedir. Metal oksit yarıiletken alan etkili transistör dozimetre sisteminde 6 MV foton enerjisinde değişim %± 1 iken 25 MV foton enerjisinde % ± 4 değerinde olduğu görülmüştür.

Sonuç: İnvivo dozimetrelerin birbirlerine göre bazı üstünlükleri vardır. Günlük kullanımda kullanıcıların dozimetre sistemlerini tanımaları ve ölçüm sonuçlarını etkileyecek özelliklerini bilmeleri, radyoterapi uygulanan hastaya verilen dozların doğruluğunun tespit edilmesi açısından oldukça önemlidir.

Anahtar Kelimeler: Radyoterapi; İn vivo Dozimetre; Termolüminesans Dozimetre; Metal Oksit Yarıiletken Alan Etkili Transistör; Lineer Hızlandırıcı.

References

  • International Commision on Radiation Units and Measurements (ICRU). .Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures, report 24. Washington, DC: ICRU Publications; 1976.
  • International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50) Bethesda: ICRU 62;1999.
  • Millwalter JC, Macleod SA, Thwaites ID. In vivo semiconductor dosimetry as part of routine quality assurance. The British Journal of Radiology 1998;71:661-8.
  • Lambert GD, Liversage WE, Hirst AM, Doughty D. Exit dose studies in megavoltage photon therapy. British Journal of Radiology 1983;56:329-34.
  • Ghitulescu Z, Stochioiu A, Dumitranche M. Dose measurements in teletherapy using thermoluminescent dosimeters. Romanian Report in Physics 2011;63(3):700-6.
  • Dam DV, Marinello G. Methods for in vivo dosimetry in external radiotherapy. In: Vivo dosimetry booklet. Belgium: Estro; 2006.
  • Huyskens DP, Bogaerts R, Verstraete J, Loof M, Nystrom H, Fiorino C, et al. Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams. In: ESTRO booklet. Brussels: ESTRO 2001.
  • Khan FM. The Physics of Radiation Therapy. Minneapolis, third edition Minnesota 2003:144-8.
  • McKinlay AF, Aypar A, Akın E. Termolüminescence Dosimetry Medical Physics Handbook. Techno house , Redcliffe Way, Bristol, 1981:1-150.
  • Bandjade DP, Aloysıus T et al. Entrance dose measurement: a sımple and reliable technicque. Med Dosim. 2003;28(2):73-8.
  • Alecu R, Loomis T Alecu, J, Ochran T. Guidelınes on the İmplementation of diode İn vivo dosimetry programs for photon and electron external beam therapy. Medical Dosimetry 1999;24:5–12.
  • Marrazzo L, Pallotta S, Klosowski M et al. Clinical tests of large area thermoluminescent detectors under radiotherapy beams. Radiation Measurements 2013;51:25-30.
  • Rajesh A. Kinhikar, Vedang Murthy, VineetaGoel et al. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Applied Radiation and Isotopes 2009;67:1683–5.
  • Adebayo AM, Zaccheaus IA, Onoriode AM, Chibuzo MB. Entrance radiation dose determination for selected cancer patients at the Lagos University Teaching Hospital Nigeria, Radiography 2013;19:113-6.
  • Vu TTH, Nguyen TQH, Nguyen NL, Le VV. Preparation and characteristics of LiF: Mg, Cu, Na, Si thermoluminescent material. VNU Journal of Science 2007;23:225-31.
  • Attix FH. Introduction to radiological physics and radiation dosimetry. New York: A Wiley-Interscience Publication; 1986;396-7.
  • Troncalli AJ, Chapman J. TLD linearity vs. beam energy and modality, Medical Dosimetry 2002;27:295-6.
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Eda Kaya Pepele This is me

Songül Barlaz Us

Kadir Yaray This is me

Celalettin Eroğlu This is me

Bahar Dirican This is me

Serdar Soyuer This is me

Publication Date April 10, 2015
Published in Issue Year 2015 Volume: 22 Issue: 1

Cite

APA Kaya Pepele, E., Barlaz Us, S., Yaray, K., Eroğlu, C., et al. (2015). -. Journal of Turgut Ozal Medical Center, 22(1), 22-28.
AMA Kaya Pepele E, Barlaz Us S, Yaray K, Eroğlu C, Dirican B, Soyuer S. -. J Turgut Ozal Med Cent. June 2015;22(1):22-28.
Chicago Kaya Pepele, Eda, Songül Barlaz Us, Kadir Yaray, Celalettin Eroğlu, Bahar Dirican, and Serdar Soyuer. “-”. Journal of Turgut Ozal Medical Center 22, no. 1 (June 2015): 22-28.
EndNote Kaya Pepele E, Barlaz Us S, Yaray K, Eroğlu C, Dirican B, Soyuer S (June 1, 2015) -. Journal of Turgut Ozal Medical Center 22 1 22–28.
IEEE E. Kaya Pepele, S. Barlaz Us, K. Yaray, C. Eroğlu, B. Dirican, and S. Soyuer, “-”, J Turgut Ozal Med Cent, vol. 22, no. 1, pp. 22–28, 2015.
ISNAD Kaya Pepele, Eda et al. “-”. Journal of Turgut Ozal Medical Center 22/1 (June 2015), 22-28.
JAMA Kaya Pepele E, Barlaz Us S, Yaray K, Eroğlu C, Dirican B, Soyuer S. -. J Turgut Ozal Med Cent. 2015;22:22–28.
MLA Kaya Pepele, Eda et al. “-”. Journal of Turgut Ozal Medical Center, vol. 22, no. 1, 2015, pp. 22-28.
Vancouver Kaya Pepele E, Barlaz Us S, Yaray K, Eroğlu C, Dirican B, Soyuer S. -. J Turgut Ozal Med Cent. 2015;22(1):22-8.