Research Article
BibTex RIS Cite

Investigating the validity of the gibrat law at the provincial level in Türkiye: parametric and semiparametric panel data models

Year 2024, , 52 - 65, 30.06.2024
https://doi.org/10.47934/tife.13.01.04

Abstract

The growth of cities is closely linked to the overall economic growth of nations. Especially in urban planning, predicting and modelling the growth trajectory of cities is crucial for ensuring sustainable economic growth. The growth of cities brings with it many social and economic gains, but it also increases many economic and social demands. The growth of cities is analysed based on geographical foundations, the assumption of increasing returns, and the random growth approach. The growth of cities is usually discussed in terms of three different models. The random growth approach is called Gibrat's law, and this approach allows cities to be analysed empirically. Gibrat’s law is analysed comparatively with parametric analyses as well as nonparametric and semiparametric models. This study aims to examine the validity of Gibrat's law at the provincial level in Türkiye using parametric and semiparametric panel data models. The study utilizes annual data from 2007 to 2019 at the provincial level. The analysis reveals that parametric models provide weak evidence for the validity of Gibrat's law, while semiparametric models provide stronger evidence.

Project Number

-

References

  • Anderson, G., & Ge, Y. (2005). The size distribution of Chinese cities. Regional Science and Urban Economics, 35, 756–776. https://doi.org/10.1016/j.regsciurbeco.2005.01.003.
  • Baltagi, B. H., & Li, D. (2002). Series estimation of partially linear panel data models with fixed effects. Annals of Economics and Finance, 3(1), 103-116. http://aeconf.com/Articles/May2002/aef030106.pdf.
  • Black, D., & Henderson, V. (1999). A theory of urban growth. Journal of Political Economy, 107(2), 252-284. https://doi.org/10.1086/250060.
  • Black, D., & Henderson, V. (2003). Urban evolution in the USA. Journal of Economic Geography 3, 343-372. https://www.jstor.org/stable/26160496.
  • Bosker, M., Brakman, S., Garretsen, H., & Schramm, M. (2008). A century of shocks: the evolution of the German city size distribution 1925–1999. Regional Science and Urban Economics 38, 330–347. https://doi.org/10.1016/j.regsciurbeco.2008.04.002.
  • Clark, J., & Stabler, J. (1991). Gibrat's law and the growth of Canadian cities. Urban Studies, 28(4), 635-639. https://doi.org/10.1080/00420989120080701.
  • Córdoba, J. (2008). A generalized gibrat's law. International Economic Review, 49(4), 1463-1468. https://doi.org/10.1111/j.1468-2354.2008.00518.x.
  • Davis, D., & Weinstein, D. (2002). Bones, bombs, and break points: the geography of economic activity. American Economic Review, 92(5), 1269-1289. Doi: 10.1257/000282802762024502.
  • Deliktas E., Önder A. Ö., & Karadag M. (2013). The size distribution of cities and determinants of city growth in Türkiye. European Planning Studies, 21(2), 251-263. https://doi.org/10.1080/09654313.2012.722922.
  • Eaton, J., & Eckstein, Z. (1997). Cities and growth: theory and evidence from France and Japan. Regional Science and Urban Economics 27, 443-474. https://doi.org/10.1016/S0166-0462(97)80005-1.
  • Eeckhout, J. (2004). Gibrat's law for (all) cities. The American Economic Review, 94(5), 1429-1451. Doi: 10.1257/0002828043052303.
  • Gibrat, R. (1931). Les Inégalités economiques applications: aux ınégalités des richesses, à la concentration des entreprises, aux populations des villes, aux statistiques des familles etc.: D'une Loi Nouvelle La Loi De L'effet Proportionnel (Dissertation). Paris: Librairie du Recueil Sirey.
  • Giesen, K., & Südekum, J. (2011). Zipfs law for cities in the regions and the country. Journal of Economic Geography, 11, 667-686. https://doi.org/10.1093/jeg/lbq019.
  • Glaeser, E., & Shapiro, J. (2003). Urban growth in the 1990s: ıs city living back? Journal of Regional Science, 43(1), 139-165. https://doi.org/10.1111/1467-9787.00293.
  • Glaeser, E., Scheinkman, J., & Shleifer, A. (1995). Economic growth in a cross-section of cities. Journal of Monetary Economics 36(1), 117-143. https://doi.org/10.1016/0304-3932(95)01206-2.
  • Gonz´alez-Val, R. (2023). Parametric, semiparametric and nonparametric models of urban growth. Cities, 132 104079, 1-10. https://doi.org/10.1016/j.cities.2022.104079.
  • Gonza´lez-Val, R., Lanaspa, L., & Sanz-Gracia, F. (2014). New evidence on gibrat’s law for cities. Urban Studies 51(1), 93-115. https://doi.org/10.1177/0042098013484528.
  • González-Val, R., & Olmo, J. (2015). Growth in a cross-section of cities: location, ıncreasing returns or random growth?. Spatial Economic Analysis, 10(2), 230-261. http://dx.doi.org/10.1080/17421772.2015.1023337.
  • González-Val, R., & Sanso-Navarro, M. (2010). Gibrat’s law for countries. Journal of Population Economics 23, 1371–1389. Doi: 10.1007/s00148-009-0246-7.
  • Guerin-Pace, F. (1995). Rank-size distribution and the process of urban growth. Urban Studies, 32(3), 551-562. https://doi.org/10.1080/00420989550012960.
  • Henderson, J., & Wang, H. (2007). Urbanization and city growth: the role of ınstitutions. Regional Science and Urban Economics 37, 283–313. Doi:10.1016/j.regsciurbeco.2006.11.008.
  • Ioannides, Y., & Overman, H. (2003). Zipf’s law for cities: an empirical examination. Regional Science and Urban Economics 33, 127–137. https://doi.org/10.1016/S0166-0462(02)00006-6.
  • Seyfettinoğlu, Ü., & Akın, B. (2020). Türkiye’de kentsel büyümenin mekânsal olarak değişen dinamikleri. Akdeniz İİBF Dergisi, 20(2) , 239-253. https://doi.org/10.25294/auiibfd.827505.
  • Soo, K. (2007). Zipf’s law and urban growth in Malaysia. Urban Studies, 44(1) , 1-14. Doi: 10.1080/00420980601023869.
  • Wheeler, C. (2003). Evidence on agglomeration economies, diseconomies, and growth. Journal of Applied Econometrics, 18(1), 79-104. https://doi.org/10.1002/jae.678.
  • Zeren, F., & Savrul, B. (2012). Türkiye’de şehirleşmeyi etkileyen faktörler: mekansal ekonometri analizi. Journal of Yasar University 28(7), 4749-4765. https://dergipark.org.tr/tr/download/article-file/179377

Türkiye’de iller düzeyinde gibrat yasasinin geçerliliğinin incelenmesi: parametrik ve semiparametrik panel veri modelleri

Year 2024, , 52 - 65, 30.06.2024
https://doi.org/10.47934/tife.13.01.04

Abstract

Şehirlerin büyümesi, ülkelerin ekonomik olarak büyümesiyle eş tutulmaktadır. Şehirlerin büyümesinin izlediği yörüngenin tahmin edilmesi ve modellenmesi, şehir planlamaları başta olmak üzere sürdürülebilir ekonomik büyümenin sağlanması açısından büyük önem taşımaktadır. Şehirlerin büyümesi, sosyal ve ekonomik birçok kazanımı beraberinde getirmesiyle birlikte birçok sosyal ve ekonomik gereksinimi de artırmaktadır. Şehirlerin büyümesi, genellikle üç farklı model üzerinden tartışılmaktadır. Şehirlerin büyümesi, coğrafi temeller, artan getiri varsayımı ve rastgele büyüme yaklaşımı temelinde incelenmektedir. Rastgele büyüme yaklaşımı Gibrat yasası olarak ifade edilmekte ve ampirik olarak incelenmesine olanak vermektedir. Gibrat yasası parametrik analizlerin yanı sıra nonparametrik ve semiparametrik modellerle karşılaştırmalı olarak incelenmektedir. Bu çalışmada Türkiye’de iller düzeyinde Gibrat yasasının geçerliliğinin parametrik ve semiparametrik panel veri modelleri ile incelenmesi amaçlanmaktadır. Çalışmada iller düzeyinde 2007-2019 dönemine ait yıllık veriler kullanılmıştır. Analizler sonucunda, parametrik modellerin Gibrat yasasının geçerliliğine yönelik zayıf kanıtlar sunarken, semiparametrik modellerin ise daha güçlü kanıtlar sunduğu tespit edilmiştir.

Ethical Statement

Yazarlar arasında çıkar çatışması bulunmamaktadır.

Supporting Institution

Çalışma finansal destek almamıştır. The paper did not receive funding, scholarships, or grants from any institution or organization.

Project Number

-

Thanks

Çalışmada teşekkür bulunmamaktadır.

References

  • Anderson, G., & Ge, Y. (2005). The size distribution of Chinese cities. Regional Science and Urban Economics, 35, 756–776. https://doi.org/10.1016/j.regsciurbeco.2005.01.003.
  • Baltagi, B. H., & Li, D. (2002). Series estimation of partially linear panel data models with fixed effects. Annals of Economics and Finance, 3(1), 103-116. http://aeconf.com/Articles/May2002/aef030106.pdf.
  • Black, D., & Henderson, V. (1999). A theory of urban growth. Journal of Political Economy, 107(2), 252-284. https://doi.org/10.1086/250060.
  • Black, D., & Henderson, V. (2003). Urban evolution in the USA. Journal of Economic Geography 3, 343-372. https://www.jstor.org/stable/26160496.
  • Bosker, M., Brakman, S., Garretsen, H., & Schramm, M. (2008). A century of shocks: the evolution of the German city size distribution 1925–1999. Regional Science and Urban Economics 38, 330–347. https://doi.org/10.1016/j.regsciurbeco.2008.04.002.
  • Clark, J., & Stabler, J. (1991). Gibrat's law and the growth of Canadian cities. Urban Studies, 28(4), 635-639. https://doi.org/10.1080/00420989120080701.
  • Córdoba, J. (2008). A generalized gibrat's law. International Economic Review, 49(4), 1463-1468. https://doi.org/10.1111/j.1468-2354.2008.00518.x.
  • Davis, D., & Weinstein, D. (2002). Bones, bombs, and break points: the geography of economic activity. American Economic Review, 92(5), 1269-1289. Doi: 10.1257/000282802762024502.
  • Deliktas E., Önder A. Ö., & Karadag M. (2013). The size distribution of cities and determinants of city growth in Türkiye. European Planning Studies, 21(2), 251-263. https://doi.org/10.1080/09654313.2012.722922.
  • Eaton, J., & Eckstein, Z. (1997). Cities and growth: theory and evidence from France and Japan. Regional Science and Urban Economics 27, 443-474. https://doi.org/10.1016/S0166-0462(97)80005-1.
  • Eeckhout, J. (2004). Gibrat's law for (all) cities. The American Economic Review, 94(5), 1429-1451. Doi: 10.1257/0002828043052303.
  • Gibrat, R. (1931). Les Inégalités economiques applications: aux ınégalités des richesses, à la concentration des entreprises, aux populations des villes, aux statistiques des familles etc.: D'une Loi Nouvelle La Loi De L'effet Proportionnel (Dissertation). Paris: Librairie du Recueil Sirey.
  • Giesen, K., & Südekum, J. (2011). Zipfs law for cities in the regions and the country. Journal of Economic Geography, 11, 667-686. https://doi.org/10.1093/jeg/lbq019.
  • Glaeser, E., & Shapiro, J. (2003). Urban growth in the 1990s: ıs city living back? Journal of Regional Science, 43(1), 139-165. https://doi.org/10.1111/1467-9787.00293.
  • Glaeser, E., Scheinkman, J., & Shleifer, A. (1995). Economic growth in a cross-section of cities. Journal of Monetary Economics 36(1), 117-143. https://doi.org/10.1016/0304-3932(95)01206-2.
  • Gonz´alez-Val, R. (2023). Parametric, semiparametric and nonparametric models of urban growth. Cities, 132 104079, 1-10. https://doi.org/10.1016/j.cities.2022.104079.
  • Gonza´lez-Val, R., Lanaspa, L., & Sanz-Gracia, F. (2014). New evidence on gibrat’s law for cities. Urban Studies 51(1), 93-115. https://doi.org/10.1177/0042098013484528.
  • González-Val, R., & Olmo, J. (2015). Growth in a cross-section of cities: location, ıncreasing returns or random growth?. Spatial Economic Analysis, 10(2), 230-261. http://dx.doi.org/10.1080/17421772.2015.1023337.
  • González-Val, R., & Sanso-Navarro, M. (2010). Gibrat’s law for countries. Journal of Population Economics 23, 1371–1389. Doi: 10.1007/s00148-009-0246-7.
  • Guerin-Pace, F. (1995). Rank-size distribution and the process of urban growth. Urban Studies, 32(3), 551-562. https://doi.org/10.1080/00420989550012960.
  • Henderson, J., & Wang, H. (2007). Urbanization and city growth: the role of ınstitutions. Regional Science and Urban Economics 37, 283–313. Doi:10.1016/j.regsciurbeco.2006.11.008.
  • Ioannides, Y., & Overman, H. (2003). Zipf’s law for cities: an empirical examination. Regional Science and Urban Economics 33, 127–137. https://doi.org/10.1016/S0166-0462(02)00006-6.
  • Seyfettinoğlu, Ü., & Akın, B. (2020). Türkiye’de kentsel büyümenin mekânsal olarak değişen dinamikleri. Akdeniz İİBF Dergisi, 20(2) , 239-253. https://doi.org/10.25294/auiibfd.827505.
  • Soo, K. (2007). Zipf’s law and urban growth in Malaysia. Urban Studies, 44(1) , 1-14. Doi: 10.1080/00420980601023869.
  • Wheeler, C. (2003). Evidence on agglomeration economies, diseconomies, and growth. Journal of Applied Econometrics, 18(1), 79-104. https://doi.org/10.1002/jae.678.
  • Zeren, F., & Savrul, B. (2012). Türkiye’de şehirleşmeyi etkileyen faktörler: mekansal ekonometri analizi. Journal of Yasar University 28(7), 4749-4765. https://dergipark.org.tr/tr/download/article-file/179377
There are 26 citations in total.

Details

Primary Language English
Subjects Macroeconomics (Other)
Journal Section Research Article
Authors

Şaban Kızılarslan 0000-0003-1545-9597

Mustafa Zuhal 0000-0002-4645-4628

Project Number -
Early Pub Date June 12, 2024
Publication Date June 30, 2024
Submission Date February 1, 2024
Acceptance Date May 8, 2024
Published in Issue Year 2024

Cite

APA Kızılarslan, Ş., & Zuhal, M. (2024). Investigating the validity of the gibrat law at the provincial level in Türkiye: parametric and semiparametric panel data models. Trakya Üniversitesi İktisadi Ve İdari Bilimler Fakültesi E-Dergi, 13(1), 52-65. https://doi.org/10.47934/tife.13.01.04

           Creative Commons Lisansı     Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Open_Access_logo_with_dark_text_for_contrast%2C_on_transparent_background.png