Research Article
BibTex RIS Cite

WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL

Year 2025, Volume: 27 Issue: IERFM 2025 Özel Sayı, 275 - 302, 14.03.2025
https://doi.org/10.26468/trakyasobed.1514346

Abstract

There are two approaches to analyzing the value of a stock in financial markets: fundamental analysis and technical analysis. While fundamental analysis focuses on finding the intrinsic value of a stock based on a company's financial condition and current market conditions, technical analysis focuses on identifying trading signals in patterns by examining historical price behavior and statistics. Although technical analysis, which is based on the assumption that past price movements can be an indicator for future price movements, has a predefined set of rules, the interpretation of the results is closely related to the experience of the analyst. Therefore, the interpretive part of technical analysis has a subjective dimension. This subjective dimension and predefined set of rules indicate that machine learning methods with experience-based learning logic can be an important tool in identifying trading signals or predicting price movements. The aim of this study is to investigate the potential use of machine learning algorithms that use technical analysis indicators of stocks traded in Borsa Istanbul as input to predict trading signals and price movements. In the study, technical analysis indicators are analyzed with models based on machine learning methods and the results are compared. The findings show that the addition of machine learning methods to technical analysis strategies increases the predictive power of trading signals and price movements.

References

  • Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of accounting research, 35(1), 1-24.
  • Agrawal, M., Khan, A. U., & Shukla, P. K. (2019). Stock indices price prediction based on technical indicators using deep learning model. International Journal on Emerging Technologies, 10(2), 186-194.
  • Aït-Sahalia, Y., & Xiu, D. (2019). Principal component analysis of high-frequency data. Journal of the american statistical association, 114(525), 287-303.
  • Albahli, S., Nazir, T., Nawaz, M., & Irtaza, A. (2023). An improved DenseNet model for prediction of stock market using stock technical indicators. Expert Systems with Applications, 232, 120903.
  • Ayala, J., García-Torres, M., Noguera, J. L. V., Gómez-Vela, F., & Divina, F. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119.
  • Ayyildiz, N., & Iskenderoglu, O. (2024). How effective is machine learning in stock market predictions?. Heliyon, 10(2).
  • Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with Applications, 42(20), 7046-7056.
  • Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.
  • Bawa, P., Kadyan, V., Mantri, A., & Vardhan, H. (2024). Investigating multiclass autism spectrum disorder classification using machine learning techniques. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 8, 100602.
  • Bessembinder, H., & Chan, K. (1995). The profitability of technical trading rules in the Asian stock markets. Pacific-basin finance journal, 3(2-3), 257-284.
  • Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful?. In Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7 (pp. 217-235). Springer Berlin Heidelberg.
  • Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
  • Bisoi, R., & Dash, P. K. (2014). A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Applied Soft Computing, 19, 41-56.
  • Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., & Weber, I. (2012). Web search queries can predict stock market volumes. PloS one, 7(7), e40014.
  • Borsa İstanbul. (2024). BIST 50 index detail. Retrieved July 5, 2024, from https://www.borsaistanbul.com/en/index-detail/6/bist-50
  • Chart Formations. (2024, July 5). Cycle indicator. https://www.chart-formations.com/indicators/cycle Cootner, P. H. (1964). The random character of stock market prices. MIT Press.
  • Copeland, B.J.. "artificial intelligence". Encyclopedia Britannica, 5 Jun. 2024, https://www.britannica.com/technology/artificial-intelligence. Accessed 6 June 2024.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
  • De Bondt, W. F., & Thaler, R. H. (1995). Financial decision-making in markets and firms: A behavioral perspective. Handbooks in operations research and management science, 9, 385-410.
  • De Oliveira, F. A., Nobre, C. N., & Zárate, L. E. (2013). Applying Artificial Neural Networks to prediction of stock price and improvement of the directional prediction index–Case study of PETR4, Petrobras, Brazil. Expert systems with applications, 40(18), 7596-7606.
  • Fama, E. F. (1965a). The behavior of stock-market prices. The journal of Business, 38(1), 34-105.
  • Fama, E. F. (1965b). Random Walks in Stock Market Prices. Financial Analysts Journal, 21(5), 55–59. http://www.jstor.org/stable/4469865
  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486
  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29(5), 1189-1232.
  • Goutte, S., Le, H. V., Liu, F., & Von Mettenheim, H. J. (2023). Deep learning and technical analysis in cryptocurrency market. Finance Research Letters, 54, 103809.
  • Hale, B., (2023). The Only Technical Analysis Book You Will Ever Need: A Must-Have Charting Manual for Traders and Investors. Independently published.
  • Haykin, S. (1998). Neural networks: a comprehensive foundation. Prentice Hall PTR.
  • Hirshleifer, D. (2015). Behavioral finance. Annual Review of Financial Economics, 7, 133-159.
  • Hou, K., Karolyi, G. A., & Kho, B. C. (2011). What factors drive global stock returns?. The Review of Financial Studies, 24(8), 2527-2574.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
  • Kahn, M. N. (2009). Technical analysis plain and simple: Charting the markets in your language. FT Press.
  • Kamara, A. F., Chen, E., & Pan, Z. (2022). An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices. Information Sciences, 594, 1-19.
  • Khan, A. U., Bandopadhyaya, T. K., & Sharma, S. (2008, July). Comparisons of stock rates prediction accuracy using different technical indicators with backpropagation neural network and genetic algorithm based backpropagation neural network. In 2008 First International Conference on Emerging Trends in Engineering and Technology (pp. 575-580). IEEE.
  • Khaniki, M. A. L., & Manthouri, M. (2024). Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators. arXiv preprint arXiv:2403.03606.
  • Kheradyar, S., Ibrahim, I., & Nor, F. M. (2011). Stock return predictability with financial ratios. International Journal of Trade, Economics and Finance, 2(5), 391.
  • Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319.
  • Laaksonen, J., & Oja, E. (1996, June). Classification with learning k-nearest neighbors. In Proceedings of international conference on neural networks (ICNN'96) (Vol. 3, pp. 1480-1483). IEEE.
  • Lee, J. W., Park, J., Jangmin, O., Lee, J., & Hong, E. (2007). A multiagent approach to $ q $-learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(6), 864-877.
  • Lee, M. C., Chang, J. W., Hung, J. C., & Chen, B. L. (2021). Exploring the effectiveness of deep neural networks with technical analysis applied to stock market prediction. Computer Science and Information Systems, 18(2), 401-418.
  • Li, Q., Wang, T., Gong, Q., Chen, Y., Lin, Z., & Song, S. K. (2014a). Media-aware quantitative trading based on public Web information. Decision support systems, 61, 93-105.
  • Li, X., Huang, X., Deng, X., & Zhu, S. (2014b). Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information. Neurocomputing, 142, 228-238.
  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37. https://doi.org/10.2307/1924119
  • Malkiel, B. G. (1973). A Random Walk Down Wall Street: Including A Life-Cycle Guide To Personal Investing. W.W. Norton & Company, Inc.
  • Meiseles, A., & Rokach, L. (2024). Iterative Feature eXclusion (IFX): Mitigating feature starvation in gradient boosted decision trees. Knowledge-Based Systems, 111546.
  • Misra, S., Li, H., & He, J. (2020). Noninvasive fracture characterization based on the classification of sonic wave travel times. Machine learning for subsurface characterization, 4, 243-287.
  • Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098
  • Murphy, J. J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. Penguin.
  • Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246-1255.
  • Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of accounting and economics, 11(4), 295-329
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
  • Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert systems with applications, 42(1), 259-268.
  • Peng, Y., Albuquerque, P. H. M., Kimura, H., & Saavedra, C. A. P. B. (2021). Feature selection and deep neural networks for stock price direction forecasting using technical analysis indicators. Machine Learning with Applications, 5, 100060.
  • Pxardeshi, Y. K., & Kale, P. (2021, July). Technical analysis indicators in stock market using machine learning: A comparative analysis. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
  • Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234-3241.
  • Rockefeller, B. (2019). Technical analysis for dummies. John Wiley & Sons.
  • Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Iglesias, F. G., & Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert systems with Applications, 38(9), 11489-11500.
  • Russell, S. J., & Norvig, P. (2021). Artificial intelligence a modern approach (4rd ed.). London
  • Saghiri, A. M., Vahidipour, S. M., Jabbarpour, M. R., Sookhak, M., & Forestiero, A. (2022). A survey of artificial intelligence challenges: Analyzing the definitions, relationships, and evolutions. Applied sciences, 12(8), 4054.
  • Sezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017). A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters. Procedia computer science, 114, 473-480.
  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
  • Shefrin, H. (2002). Beyond greed and fear: Understanding behavioral finance and the psychology of investing. Oxford University Press.
  • Shiller, R. J. (2015). Irrational exuberance: Revised and expanded third edition. In Irrational exuberance. Princeton university press.
  • Srivastava, R., Kumar, S., & Kumar, B. (2023). Classification model of machine learning for medical data analysis. In Statistical Modeling in Machine Learning (pp. 111-132). Academic Press.
  • Sun, A., Lachanski, M., & Fabozzi, F. J. (2016). Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction. International Review of Financial Analysis, 48, 272-281.
  • Sureshkumar, K. K., & Elango, N. M. (2011). An efficient approach to forecast Indian stock market price and their performance analysis. International Journal of Computer Applications, 34(5), 44-49.
  • Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890.
  • Thaler, R. H. (2015). Misbehaving: The making of behavioral economics. WW Norton & Company.
  • Treynor, Jack L. (1962). Toward a Theory of Market Value of Risky Assets. Unpublished manuscript. A final version was published in 1999, in Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Robert A. Korajczyk (editor) London: Risk Books, pp. 15–22.
  • Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. science, 185(4157), 1124-1131.
  • Umoh, U. A., Eyoh, I. J., Murugesan, V. S., & Nyoho, E. E. (2022). Fuzzy-machine learning models for the prediction of fire outbreaks: A comparative analysis. In Artificial Intelligence and Machine Learning for EDGE Computing (pp. 207-233). Academic Press.
  • Vapnik, V. (1995). The nature of statistical learning theory. Springer Science & Business Media.
  • Wei, L. Y., Chen, T. L., & Ho, T. H. (2011). A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market. Expert Systems with Applications, 38(11), 13625-13631.
  • Weng, B., Ahmed, M. A., & Megahed, F. M. (2017). Stock market one-day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153-163.
  • Wilder, J. W. (1978). New concepts in technical trading systems. Greensboro, NC.
  • Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Procedia-Social and Behavioral Sciences, 26, 55-62.
  • Zhang, Y., & Wang, J. (2016). K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. International Journal of forecasting, 32(3), 1074-1080.

Makineler Teknik Analiz Öğrendiğinde: Borsa İstanbul’da Makine Öğrenmesi ile Teknik Analiz Üzerine Bir Uygulama

Year 2025, Volume: 27 Issue: IERFM 2025 Özel Sayı, 275 - 302, 14.03.2025
https://doi.org/10.26468/trakyasobed.1514346

Abstract

Finansal piyasalarda bir hisse senedinin değerini analiz etmek için biri temel analiz diğeri teknik analiz olmak üzere iki yaklaşım vardır. Temel analiz bir şirketin mali durumuna ve mevcut piyasa koşullarına bağlı olarak hisse senedinin içsel değerini bulmaya yönelirken teknik analiz tarihsel fiyat davranışlarını ve istatistiklerini inceleyerek örüntülerdeki işlem sinyallerini belirlemeye odaklanmaktadır. Geçmişteki fiyat hareketlerinin gelecekteki fiyat hareketleri için bir gösterge olabileceği varsayımına dayalı olan teknik analizde her ne kadar önceden tanımlanmış kurallar seti olsa da sonuçların yorumlanması analistin deneyimi ile yakından ilişkilidir. Dolayısıyla teknik analizin yoruma açık kısmı öznel bir boyuta sahiptir. Bu öznel boyut ve önceden tanımlanmış kurallar seti, deneyime dayalı öğrenme mantığına sahip makine öğrenmesi yöntemlerinin, işlem sinyallerinin belirlenmesi ya da fiyat hareketlerinin tahmin edilmesinde önemli bir araç olabileceğine işaret etmektedir. Bu çalışmanın amacı girdi olarak Borsa İstanbul’da işlem gören hisse senetlerinin teknik analiz göstergelerini kullanan makine öğrenmesi algoritmalarının, işlem sinyallerini ve fiyat hareketlerini tahmin etmek için potansiyel kullanımını araştırmaktır. Çalışmada teknik analiz göstergeleri makine öğrenmesi yöntemlerine dayalı modeller ile analiz edilmekte ve sonuçlar karşılaştırılmaktadır. Bulgular, makine öğrenmesi yöntemlerinin teknik analiz stratejilerine eklenmesinin, işlem sinyallerini ve fiyat hareketlerini tahmin gücünü artırdığını göstermektedir.

References

  • Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of accounting research, 35(1), 1-24.
  • Agrawal, M., Khan, A. U., & Shukla, P. K. (2019). Stock indices price prediction based on technical indicators using deep learning model. International Journal on Emerging Technologies, 10(2), 186-194.
  • Aït-Sahalia, Y., & Xiu, D. (2019). Principal component analysis of high-frequency data. Journal of the american statistical association, 114(525), 287-303.
  • Albahli, S., Nazir, T., Nawaz, M., & Irtaza, A. (2023). An improved DenseNet model for prediction of stock market using stock technical indicators. Expert Systems with Applications, 232, 120903.
  • Ayala, J., García-Torres, M., Noguera, J. L. V., Gómez-Vela, F., & Divina, F. (2021). Technical analysis strategy optimization using a machine learning approach in stock market indices. Knowledge-Based Systems, 225, 107119.
  • Ayyildiz, N., & Iskenderoglu, O. (2024). How effective is machine learning in stock market predictions?. Heliyon, 10(2).
  • Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert systems with Applications, 42(20), 7046-7056.
  • Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.
  • Bawa, P., Kadyan, V., Mantri, A., & Vardhan, H. (2024). Investigating multiclass autism spectrum disorder classification using machine learning techniques. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 8, 100602.
  • Bessembinder, H., & Chan, K. (1995). The profitability of technical trading rules in the Asian stock markets. Pacific-basin finance journal, 3(2-3), 257-284.
  • Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is “nearest neighbor” meaningful?. In Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7 (pp. 217-235). Springer Berlin Heidelberg.
  • Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.
  • Bisoi, R., & Dash, P. K. (2014). A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Applied Soft Computing, 19, 41-56.
  • Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., & Weber, I. (2012). Web search queries can predict stock market volumes. PloS one, 7(7), e40014.
  • Borsa İstanbul. (2024). BIST 50 index detail. Retrieved July 5, 2024, from https://www.borsaistanbul.com/en/index-detail/6/bist-50
  • Chart Formations. (2024, July 5). Cycle indicator. https://www.chart-formations.com/indicators/cycle Cootner, P. H. (1964). The random character of stock market prices. MIT Press.
  • Copeland, B.J.. "artificial intelligence". Encyclopedia Britannica, 5 Jun. 2024, https://www.britannica.com/technology/artificial-intelligence. Accessed 6 June 2024.
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
  • De Bondt, W. F., & Thaler, R. H. (1995). Financial decision-making in markets and firms: A behavioral perspective. Handbooks in operations research and management science, 9, 385-410.
  • De Oliveira, F. A., Nobre, C. N., & Zárate, L. E. (2013). Applying Artificial Neural Networks to prediction of stock price and improvement of the directional prediction index–Case study of PETR4, Petrobras, Brazil. Expert systems with applications, 40(18), 7596-7606.
  • Fama, E. F. (1965a). The behavior of stock-market prices. The journal of Business, 38(1), 34-105.
  • Fama, E. F. (1965b). Random Walks in Stock Market Prices. Financial Analysts Journal, 21(5), 55–59. http://www.jstor.org/stable/4469865
  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486
  • Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29(5), 1189-1232.
  • Goutte, S., Le, H. V., Liu, F., & Von Mettenheim, H. J. (2023). Deep learning and technical analysis in cryptocurrency market. Finance Research Letters, 54, 103809.
  • Hale, B., (2023). The Only Technical Analysis Book You Will Ever Need: A Must-Have Charting Manual for Traders and Investors. Independently published.
  • Haykin, S. (1998). Neural networks: a comprehensive foundation. Prentice Hall PTR.
  • Hirshleifer, D. (2015). Behavioral finance. Annual Review of Financial Economics, 7, 133-159.
  • Hou, K., Karolyi, G. A., & Kho, B. C. (2011). What factors drive global stock returns?. The Review of Financial Studies, 24(8), 2527-2574.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
  • Kahn, M. N. (2009). Technical analysis plain and simple: Charting the markets in your language. FT Press.
  • Kamara, A. F., Chen, E., & Pan, Z. (2022). An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices. Information Sciences, 594, 1-19.
  • Khan, A. U., Bandopadhyaya, T. K., & Sharma, S. (2008, July). Comparisons of stock rates prediction accuracy using different technical indicators with backpropagation neural network and genetic algorithm based backpropagation neural network. In 2008 First International Conference on Emerging Trends in Engineering and Technology (pp. 575-580). IEEE.
  • Khaniki, M. A. L., & Manthouri, M. (2024). Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators. arXiv preprint arXiv:2403.03606.
  • Kheradyar, S., Ibrahim, I., & Nor, F. M. (2011). Stock return predictability with financial ratios. International Journal of Trade, Economics and Finance, 2(5), 391.
  • Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319.
  • Laaksonen, J., & Oja, E. (1996, June). Classification with learning k-nearest neighbors. In Proceedings of international conference on neural networks (ICNN'96) (Vol. 3, pp. 1480-1483). IEEE.
  • Lee, J. W., Park, J., Jangmin, O., Lee, J., & Hong, E. (2007). A multiagent approach to $ q $-learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(6), 864-877.
  • Lee, M. C., Chang, J. W., Hung, J. C., & Chen, B. L. (2021). Exploring the effectiveness of deep neural networks with technical analysis applied to stock market prediction. Computer Science and Information Systems, 18(2), 401-418.
  • Li, Q., Wang, T., Gong, Q., Chen, Y., Lin, Z., & Song, S. K. (2014a). Media-aware quantitative trading based on public Web information. Decision support systems, 61, 93-105.
  • Li, X., Huang, X., Deng, X., & Zhu, S. (2014b). Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information. Neurocomputing, 142, 228-238.
  • Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37. https://doi.org/10.2307/1924119
  • Malkiel, B. G. (1973). A Random Walk Down Wall Street: Including A Life-Cycle Guide To Personal Investing. W.W. Norton & Company, Inc.
  • Meiseles, A., & Rokach, L. (2024). Iterative Feature eXclusion (IFX): Mitigating feature starvation in gradient boosted decision trees. Knowledge-Based Systems, 111546.
  • Misra, S., Li, H., & He, J. (2020). Noninvasive fracture characterization based on the classification of sonic wave travel times. Machine learning for subsurface characterization, 4, 243-287.
  • Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098
  • Murphy, J. J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications. Penguin.
  • Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246-1255.
  • Ou, J. A., & Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal of accounting and economics, 11(4), 295-329
  • Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1), 217-222.
  • Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert systems with applications, 42(1), 259-268.
  • Peng, Y., Albuquerque, P. H. M., Kimura, H., & Saavedra, C. A. P. B. (2021). Feature selection and deep neural networks for stock price direction forecasting using technical analysis indicators. Machine Learning with Applications, 5, 100060.
  • Pxardeshi, Y. K., & Kale, P. (2021, July). Technical analysis indicators in stock market using machine learning: A comparative analysis. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
  • Rather, A. M., Agarwal, A., & Sastry, V. N. (2015). Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6), 3234-3241.
  • Rockefeller, B. (2019). Technical analysis for dummies. John Wiley & Sons.
  • Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Iglesias, F. G., & Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert systems with Applications, 38(9), 11489-11500.
  • Russell, S. J., & Norvig, P. (2021). Artificial intelligence a modern approach (4rd ed.). London
  • Saghiri, A. M., Vahidipour, S. M., Jabbarpour, M. R., Sookhak, M., & Forestiero, A. (2022). A survey of artificial intelligence challenges: Analyzing the definitions, relationships, and evolutions. Applied sciences, 12(8), 4054.
  • Sezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017). A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters. Procedia computer science, 114, 473-480.
  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
  • Shefrin, H. (2002). Beyond greed and fear: Understanding behavioral finance and the psychology of investing. Oxford University Press.
  • Shiller, R. J. (2015). Irrational exuberance: Revised and expanded third edition. In Irrational exuberance. Princeton university press.
  • Srivastava, R., Kumar, S., & Kumar, B. (2023). Classification model of machine learning for medical data analysis. In Statistical Modeling in Machine Learning (pp. 111-132). Academic Press.
  • Sun, A., Lachanski, M., & Fabozzi, F. J. (2016). Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction. International Review of Financial Analysis, 48, 272-281.
  • Sureshkumar, K. K., & Elango, N. M. (2011). An efficient approach to forecast Indian stock market price and their performance analysis. International Journal of Computer Applications, 34(5), 44-49.
  • Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890.
  • Thaler, R. H. (2015). Misbehaving: The making of behavioral economics. WW Norton & Company.
  • Treynor, Jack L. (1962). Toward a Theory of Market Value of Risky Assets. Unpublished manuscript. A final version was published in 1999, in Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Robert A. Korajczyk (editor) London: Risk Books, pp. 15–22.
  • Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. science, 185(4157), 1124-1131.
  • Umoh, U. A., Eyoh, I. J., Murugesan, V. S., & Nyoho, E. E. (2022). Fuzzy-machine learning models for the prediction of fire outbreaks: A comparative analysis. In Artificial Intelligence and Machine Learning for EDGE Computing (pp. 207-233). Academic Press.
  • Vapnik, V. (1995). The nature of statistical learning theory. Springer Science & Business Media.
  • Wei, L. Y., Chen, T. L., & Ho, T. H. (2011). A hybrid model based on adaptive-network-based fuzzy inference system to forecast Taiwan stock market. Expert Systems with Applications, 38(11), 13625-13631.
  • Weng, B., Ahmed, M. A., & Megahed, F. M. (2017). Stock market one-day ahead movement prediction using disparate data sources. Expert Systems with Applications, 79, 153-163.
  • Wilder, J. W. (1978). New concepts in technical trading systems. Greensboro, NC.
  • Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Procedia-Social and Behavioral Sciences, 26, 55-62.
  • Zhang, Y., & Wang, J. (2016). K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. International Journal of forecasting, 32(3), 1074-1080.
There are 77 citations in total.

Details

Primary Language English
Subjects Financial Markets and Institutions
Journal Section Articles
Authors

Yunus Emre Akdoğan 0000-0002-1761-2869

Publication Date March 14, 2025
Submission Date July 14, 2024
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 27 Issue: IERFM 2025 Özel Sayı

Cite

APA Akdoğan, Y. E. (2025). WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL. Trakya Üniversitesi Sosyal Bilimler Dergisi, 27(IERFM 2025 Özel Sayı), 275-302. https://doi.org/10.26468/trakyasobed.1514346
AMA Akdoğan YE. WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL. Trakya Üniversitesi Sosyal Bilimler Dergisi. March 2025;27(IERFM 2025 Özel Sayı):275-302. doi:10.26468/trakyasobed.1514346
Chicago Akdoğan, Yunus Emre. “WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL”. Trakya Üniversitesi Sosyal Bilimler Dergisi 27, no. IERFM 2025 Özel Sayı (March 2025): 275-302. https://doi.org/10.26468/trakyasobed.1514346.
EndNote Akdoğan YE (March 1, 2025) WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL. Trakya Üniversitesi Sosyal Bilimler Dergisi 27 IERFM 2025 Özel Sayı 275–302.
IEEE Y. E. Akdoğan, “WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL”, Trakya Üniversitesi Sosyal Bilimler Dergisi, vol. 27, no. IERFM 2025 Özel Sayı, pp. 275–302, 2025, doi: 10.26468/trakyasobed.1514346.
ISNAD Akdoğan, Yunus Emre. “WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL”. Trakya Üniversitesi Sosyal Bilimler Dergisi 27/IERFM 2025 Özel Sayı (March 2025), 275-302. https://doi.org/10.26468/trakyasobed.1514346.
JAMA Akdoğan YE. WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL. Trakya Üniversitesi Sosyal Bilimler Dergisi. 2025;27:275–302.
MLA Akdoğan, Yunus Emre. “WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL”. Trakya Üniversitesi Sosyal Bilimler Dergisi, vol. 27, no. IERFM 2025 Özel Sayı, 2025, pp. 275-02, doi:10.26468/trakyasobed.1514346.
Vancouver Akdoğan YE. WHEN MACHINES LEARN TECHNICAL ANALYSIS: AN APPLICATION ON TECHNICAL ANALYSIS WITH MACHINE LEARNING IN BORSA ISTANBUL. Trakya Üniversitesi Sosyal Bilimler Dergisi. 2025;27(IERFM 2025 Özel Sayı):275-302.

Trakya University Journal of Social Sciences is licensed under Creative Commons Attribution 4.0.