Research Article
BibTex RIS Cite

Keten elyaf takviyeli kompozit malzemelerin nem muhtevalarının incelenmesi

Year 2022, , 161 - 166, 01.12.2022
https://doi.org/10.52998/trjmms.1144083

Abstract

Küresel iklim değişikliği fakındalığının tetiklemesiyle artan çevre duyarlılığı, her sektörde olduğu gibi kompozit malzeme sektöründe de karşılık bulmuş ve sektör temsilcilerini çevreci çözümler araştırmaya itmiştir. Karbon ayak izini düşürmek ve doğaya verilen zararı minimuma indirmek için konvansiyonel malzemeler olan sentetik elyafların yerine doğal elyaflar tercih edilmeye başlanması bu bağlamda atılmış bir adım olarak değerlendirilebilir. Otomobil iç parçalarının da dahil olduğu birçok endüstriyel üründe doğal elyaf uygulamaları görmek mümkündür.
Kompozit malzemelerde keten elyafın kullanılma amacı geleneksel elyaflarda olduğundan farklı değildir; ancak keten elyafların hidrofilik karakteristiği, bu elyafın kompozitlerini sıcaklığa ve çevrenin nemine duyarlı hale getirir. Bu çalışma, termogravimetrik analiz (TGA) kullanarak keten elyaf takviyeli kompozitlerin ve bu elyafların cam elyafla yaptığı hibrit kompozitlerin oda sıcaklığında sahip oldukları nem miktarını araştırmayı amaçlamaktadır. Keten elyaf numunelerin nem muhteviyatları %4.9 olarak bulunurken, bu değer cam elyaf numuneler için %0.5 olarak bulunmuştur. Hibrit numunelerin nem muhteviyatları bu iki değerin arasında %2.5 olarak bulunmuştur.

References

  • Andersons, J., Spārniņš, E., Joffe, R., Wallström, L., (2005). Strength distribution of elementary flax fibres. Composites science and technology 65(3-4): 693-702. doi:10.1016/j.compscitech.2004.10.001.
  • Ashori, A., (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource technology 99(11): 4661-4667. doi: 10.1016/j.biortech.2007.09.043.
  • Assaedi, H., Alomayri, T., Shaikh, F.U., Low, I.M., (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics 4(4): 272-281. doi: 10.1007/s40145-015-0161-1.
  • Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W., (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47: 424-442. doi: 10.1016/j.matdes.2012.11.025.
  • Baley, C., Gomina, M., Breard, J., Bourmaud, A., Davies, P., (2020). Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial crops and products 145(111984). doi: 10.1016/j.indcrop.2019.111984
  • Benega, M.A., Raja, R., Blake, J.I., (2017). A preliminary evaluation of bio-based epoxy resin hardeners for maritime application. Procedia engineering 200: 186-192. doi: 10.1016/j.proeng.2017.07.027.
  • Blanchard, J.M.F.A., Sobey, A.J., Blake, J.I.R., (2016). Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering 84: 228-235. doi: 10.1016/j.compositesb.2015.08.086.
  • Boegler, O., Roth, A., Lorenz, L., Sizmann, A. (2014). Assessment Framework for Sustainable Lightweight Materials in Aviation, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV.
  • Bulut, Y., Erdoğan, Ü.H., (2011). Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanimi. Tekstil ve Mühendis 18(82): 26-35.
  • Cheour, K., Assarar, M., Scida, D., Ayad, R., Gong, X.L., (2016). Effect of water ageing on the mechanical and damping properties of flax-fibre reinforced composite materials. Composite Structures 152: 259-266. doi: 10.1016/j.compstruct.2016.05.045.
  • Cihan, M., Sobey, A.J., Blake, J.I.R., (2019). Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Composites Science and Technology 172: 36-42. doi: 10.1016/j.compscitech.2018.12.030.
  • Dallons, J.L., (2005). High performance in a nutshell: Cashew-derived curing agent excels in metal and concrete primers. European Coatings Journal 6: 34-37.
  • Deka, H., Misra, M., Mohanty, A., (2013). Renewable resource based “all green composites” from kenaf biofiber and poly (furfuryl alcohol) bioresin. Industrial Crops and Products 41: 94-101.
  • Joshi S.V., Drzal, L.T., Mohanty, A.K., Arora, S., (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied science and manufacturing 35(3): 371-376. doi: 10.1016/j.indcrop.2012.03.037.
  • Khalfallah, M., Abbès, B., Abbès, F., Guo, Y.Q., Marcel, V., Duval, A., Rousseau, F., (2014). Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Materials & Design 64: 116-126. doi:10.1016/j.matdes.2014.07.029.
  • Lu, M.M., Fuentes, C.A., Van Vuure, A.W., (2022). Moisture sorption and swelling of flax fibre and flax fibre composites. Composites Part B: Engineering 231(109538). doi: 10.1016/j.compositesb.2021.109538.
  • Moudood, A., Hall, W., Öchsner, A., Li, H., Rahman, A., Francucci, G., (2019). Effect of moisture in flax fibres on the quality of their composites. Journal of Natural Fibers 16(2): 209-224. doi:10.1080/15440478.2017.1414651
  • Shah, D.U., Schubel, P.J., Clifford, M.J., (2013). Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering 52: 172-181. doi:10.1016/j.compositesb.2013.04.027
  • Yan, L., Chouw, N., Jayaraman, K., (2014). Flax fibre and its composites–A review. Composites Part B: Engineering 56: 296-317. doi:10.1016/j.compositesb.2013.08.014
  • Yuhazri, M., Sihombing, H., (2010). A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. International Journal of Basic & Applied Sciences 10: 63-66.
  • Zhang, J., Chevali, V.S., Wang, H., Wang, C.H., (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering 193(108053). doi: 10.1016/j.compositesb.2020.108053.

Investigating the moisture content of flax fibre reinforced composite materials

Year 2022, , 161 - 166, 01.12.2022
https://doi.org/10.52998/trjmms.1144083

Abstract

Increasing environmental consciousness, triggered by global climate change awareness, has found a response in the composite material industry and has pushed the industry representatives to search for environmentally friendly alternatives to conventional materials. To reduce the carbon footprint and minimize the damage to nature, the preference for natural fibres instead of synthetic fibres can be considered a step taken in this context. Today, it is possible to see natural fibre applications in many industrial products, including automobile interior parts.
The purpose of using flax fibre in composite materials is not different from conventional fibres, however, their hydrophilic characteristics make flax fibre composites sensitive to temperature and the humidity of the surroundings. This study aims to investigate the moisture content of flax fibre composites as well as their hybrids with E-glass fibres at room temperature by using thermogravimetric analysis (TGA). It is observed that flax fibre samples have a moisture content of 4.9%, while E-glass samples have only a moisture content of 0.5%. The hybrid samples lay between these two values having a moisture content of 2.5%.

References

  • Andersons, J., Spārniņš, E., Joffe, R., Wallström, L., (2005). Strength distribution of elementary flax fibres. Composites science and technology 65(3-4): 693-702. doi:10.1016/j.compscitech.2004.10.001.
  • Ashori, A., (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource technology 99(11): 4661-4667. doi: 10.1016/j.biortech.2007.09.043.
  • Assaedi, H., Alomayri, T., Shaikh, F.U., Low, I.M., (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics 4(4): 272-281. doi: 10.1007/s40145-015-0161-1.
  • Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W., (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47: 424-442. doi: 10.1016/j.matdes.2012.11.025.
  • Baley, C., Gomina, M., Breard, J., Bourmaud, A., Davies, P., (2020). Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial crops and products 145(111984). doi: 10.1016/j.indcrop.2019.111984
  • Benega, M.A., Raja, R., Blake, J.I., (2017). A preliminary evaluation of bio-based epoxy resin hardeners for maritime application. Procedia engineering 200: 186-192. doi: 10.1016/j.proeng.2017.07.027.
  • Blanchard, J.M.F.A., Sobey, A.J., Blake, J.I.R., (2016). Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Composites Part B: Engineering 84: 228-235. doi: 10.1016/j.compositesb.2015.08.086.
  • Boegler, O., Roth, A., Lorenz, L., Sizmann, A. (2014). Assessment Framework for Sustainable Lightweight Materials in Aviation, Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV.
  • Bulut, Y., Erdoğan, Ü.H., (2011). Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanimi. Tekstil ve Mühendis 18(82): 26-35.
  • Cheour, K., Assarar, M., Scida, D., Ayad, R., Gong, X.L., (2016). Effect of water ageing on the mechanical and damping properties of flax-fibre reinforced composite materials. Composite Structures 152: 259-266. doi: 10.1016/j.compstruct.2016.05.045.
  • Cihan, M., Sobey, A.J., Blake, J.I.R., (2019). Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Composites Science and Technology 172: 36-42. doi: 10.1016/j.compscitech.2018.12.030.
  • Dallons, J.L., (2005). High performance in a nutshell: Cashew-derived curing agent excels in metal and concrete primers. European Coatings Journal 6: 34-37.
  • Deka, H., Misra, M., Mohanty, A., (2013). Renewable resource based “all green composites” from kenaf biofiber and poly (furfuryl alcohol) bioresin. Industrial Crops and Products 41: 94-101.
  • Joshi S.V., Drzal, L.T., Mohanty, A.K., Arora, S., (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied science and manufacturing 35(3): 371-376. doi: 10.1016/j.indcrop.2012.03.037.
  • Khalfallah, M., Abbès, B., Abbès, F., Guo, Y.Q., Marcel, V., Duval, A., Rousseau, F., (2014). Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Materials & Design 64: 116-126. doi:10.1016/j.matdes.2014.07.029.
  • Lu, M.M., Fuentes, C.A., Van Vuure, A.W., (2022). Moisture sorption and swelling of flax fibre and flax fibre composites. Composites Part B: Engineering 231(109538). doi: 10.1016/j.compositesb.2021.109538.
  • Moudood, A., Hall, W., Öchsner, A., Li, H., Rahman, A., Francucci, G., (2019). Effect of moisture in flax fibres on the quality of their composites. Journal of Natural Fibers 16(2): 209-224. doi:10.1080/15440478.2017.1414651
  • Shah, D.U., Schubel, P.J., Clifford, M.J., (2013). Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering 52: 172-181. doi:10.1016/j.compositesb.2013.04.027
  • Yan, L., Chouw, N., Jayaraman, K., (2014). Flax fibre and its composites–A review. Composites Part B: Engineering 56: 296-317. doi:10.1016/j.compositesb.2013.08.014
  • Yuhazri, M., Sihombing, H., (2010). A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composite. International Journal of Basic & Applied Sciences 10: 63-66.
  • Zhang, J., Chevali, V.S., Wang, H., Wang, C.H., (2020). Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering 193(108053). doi: 10.1016/j.compositesb.2020.108053.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mehmet Cihan 0000-0002-2493-6116

Marcos Antonio Gimenes Benega This is me 0000-0003-4954-7384

Hélio Rıbeıro This is me 0000-0001-5489-1927

Publication Date December 1, 2022
Submission Date July 15, 2022
Acceptance Date July 29, 2022
Published in Issue Year 2022

Cite

APA Cihan, M., Benega, M. A. G., & Rıbeıro, H. (2022). Investigating the moisture content of flax fibre reinforced composite materials. Turkish Journal of Maritime and Marine Sciences, 8(2), 161-166. https://doi.org/10.52998/trjmms.1144083

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).