BibTex RIS Cite

Some Remarks on the Three Dimensionality of Hydrofoil Cavitation

Year 2017, Volume: 3 Issue: 2, 113 - 120, 01.12.2017

Abstract

As it is well-known that cavitation is a very important physical phenomenon that affects significantly the performance of three-dimensional hydrofoils. Prediction of cavitation on three-dimensional hydrofoils is very important in the design stage. In this study, some approaches have been verified for hydrofoil cavitation. The main aim of this paper is to compare the mid-section pressure distribution of three-dimensional cavitating rectangular hydrofoil for increasing aspect ratios, with the pressure distribution of two-dimensional cavitating hydrofoil having the same section geometry as in the three-dimensional hydrofoil.In this study, a boundary element (panel) method (BEM) has been applied to investigate the hydrofoil cavitation for both two- and three-dimensional cases. Two-dimensional analytical solution in case of cavitating flat-plate has also been applied for comparison. It has been shown that the pressure distributions on the mid-section of three-dimensional cavitating and non-cavitating hydrofoil for increasing aspect ratios have converged to the solutions in two-dimensional case

References

  • Kinnas, S. A., Fine, N. E. (1993). MIT-PCPAN and MIT-SCPAN (Partially cavitating and super cavitating 2-D panel methods) User’s Manual, Version 1.0.
  • Tulin, M. P., (1964). Supercavitating Flows Small
  • Perturbation Theory, J. Ship Res. 7: 16–37. Uhlman, J. S., (1987). The Surface Singularity
  • Method Applied to Partially Cavitating Hydrofoils, J. Sh. Res. 31 (2): 107–124. Kinnas, S. A. (1999). Fundamentals of Cavity Flows, Austin.
  • Karaalioğlu, M. S. (2015). Hidrofoillerin Kavitasyon Kovalarının
  • İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. İncelenmesi, Karaalioğlu, M. S., Bal, Ş., (2015). Numerical
  • Investigation Cavitation Buckets for Hydrofoil Parametrically, Turkish Journal of Maritime and Marine Sciences 1(2): 89-101. Karaalioğlu, M. S., Bal, Ş., 2016. Investigation of hydrodynamic performance of cavitating blades of marine current turbines in uniform flow, 1St
  • International Congress on Ship and Marine Technology. Bal, Ş., Atlar, M., Usar, D., (2015). Performance prediction of horizontal axis marine current turbines, Ocean Syst. Eng. 5(2): 125–138.
  • Uşar, D. (2015). Sualtı Akıntı Türbinlerinin Hidrodinamik Analizi, Doktora Tezi, İstanbul Teknik Üniversitesi. Uşar, D., Bal, Ş., (2015). Cavitation simulation on horizontal axis marine current turbines, Renew. Energy, 80: 15–25.
  • Nishiyama, T. (1970). Lifting-line Theory of
  • Supercavitating Hydrofoil of Finite Span, ZAMM - Zeitschrift für Angew. Math. und Mech. 50(11): 645– Furuya, O., (1975). Nonlinear calculation of arbitrarily shaped supercavitating hydrofoils near a free surface, J. Fluid Mech. 68 (1): 21.
  • Celik, F., Arikan Ozden, Y., Bal, S., (2014).
  • Numerical simulation of flow around two- and three- dimensional partially cavitating hydrofoils, Ocean Eng. 78: 22–34. Bal, S., Kinnas, S. A., Lee, H., (2001). Numerical
  • Analysis of 2-D and 3-D Cavitating Hydrofoils under a Free Surface, J. Sh. Res. 45(1): 34–49. Kinnas, S. A., Fine, N. E., (1993). A numerical nonlinear analysis of the flow around two- and three- dimensional partially cavitating hydrofoils, Journal of Fluid Mechanics 254(1):151.
  • Bal, S., Kinnas, S. A., (2003). A numerical wave tank model for cavitating hydrofoils, Comput. Mech. 32 (4–6): 259–268.
  • Bal, S., (2011). The effect of finite depth on 2D and D cavitating hydrofoils, J. Mar. Sci. Technol. 16(2): –142.
  • Kinnas, S. A., Fine, N. E. 1990. Non-linear Analysis of Flow Around Partially or Super-Cavitating
  • Hydrofoils by a Potential Based Panel, Proceeding the IABEM-90 Symposium. Katz, Aerodynamics. Cambridge University Press. A. (2001). Low-Speed

Üç Boyutlu Hidrofoil Kavitasyonu ile İlgili Bazı Sonuçlar

Year 2017, Volume: 3 Issue: 2, 113 - 120, 01.12.2017

Abstract

Bilindiği üzere, kavitasyon üç boyutlu hidrofoillerin performansını etkileyen çok önemli fiziksel bir olgudur. Dizayn açısından, kavitasyonun doğru hesabı önem arz etmektedir. Bu çalışmada, kavitasyon açısından yapılan bazı yaklaşımların doğrulanması yapılmıştır. Temelde yapılan çalışmanın amacı, üç boyutlu dikdörtgen bir kanadın ortasındaki ince bir dilim incelenerek iki boyutlu kesit ile üç boyutlu kanat arasındaki ilişkinin (basnç dağılımı cinsinden) artan yan oran ile incelenmesidir. Çalışmada kavitasyonlu iki ve üç boyutlu hidrofoillerin incelenmesinde sınır elemanları yöntemi kullanılmıştır. İki boyutlu hesaplamaların anlatıldığı bölümde, düz plaka için literatürde bulunan analitik çözümler de kullanılmıştır. Üç boyutlu durumun incelendiği bölümde, kanada ait orta kesitteki basınç dağılımının artan yan oran ile iki boyutlu değerlere yakınsadığı gösterilmiştir. Bu, hem kavitasyonlu hem de kavitasyonsuz durumda yapılmıştır

References

  • Kinnas, S. A., Fine, N. E. (1993). MIT-PCPAN and MIT-SCPAN (Partially cavitating and super cavitating 2-D panel methods) User’s Manual, Version 1.0.
  • Tulin, M. P., (1964). Supercavitating Flows Small
  • Perturbation Theory, J. Ship Res. 7: 16–37. Uhlman, J. S., (1987). The Surface Singularity
  • Method Applied to Partially Cavitating Hydrofoils, J. Sh. Res. 31 (2): 107–124. Kinnas, S. A. (1999). Fundamentals of Cavity Flows, Austin.
  • Karaalioğlu, M. S. (2015). Hidrofoillerin Kavitasyon Kovalarının
  • İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. İncelenmesi, Karaalioğlu, M. S., Bal, Ş., (2015). Numerical
  • Investigation Cavitation Buckets for Hydrofoil Parametrically, Turkish Journal of Maritime and Marine Sciences 1(2): 89-101. Karaalioğlu, M. S., Bal, Ş., 2016. Investigation of hydrodynamic performance of cavitating blades of marine current turbines in uniform flow, 1St
  • International Congress on Ship and Marine Technology. Bal, Ş., Atlar, M., Usar, D., (2015). Performance prediction of horizontal axis marine current turbines, Ocean Syst. Eng. 5(2): 125–138.
  • Uşar, D. (2015). Sualtı Akıntı Türbinlerinin Hidrodinamik Analizi, Doktora Tezi, İstanbul Teknik Üniversitesi. Uşar, D., Bal, Ş., (2015). Cavitation simulation on horizontal axis marine current turbines, Renew. Energy, 80: 15–25.
  • Nishiyama, T. (1970). Lifting-line Theory of
  • Supercavitating Hydrofoil of Finite Span, ZAMM - Zeitschrift für Angew. Math. und Mech. 50(11): 645– Furuya, O., (1975). Nonlinear calculation of arbitrarily shaped supercavitating hydrofoils near a free surface, J. Fluid Mech. 68 (1): 21.
  • Celik, F., Arikan Ozden, Y., Bal, S., (2014).
  • Numerical simulation of flow around two- and three- dimensional partially cavitating hydrofoils, Ocean Eng. 78: 22–34. Bal, S., Kinnas, S. A., Lee, H., (2001). Numerical
  • Analysis of 2-D and 3-D Cavitating Hydrofoils under a Free Surface, J. Sh. Res. 45(1): 34–49. Kinnas, S. A., Fine, N. E., (1993). A numerical nonlinear analysis of the flow around two- and three- dimensional partially cavitating hydrofoils, Journal of Fluid Mechanics 254(1):151.
  • Bal, S., Kinnas, S. A., (2003). A numerical wave tank model for cavitating hydrofoils, Comput. Mech. 32 (4–6): 259–268.
  • Bal, S., (2011). The effect of finite depth on 2D and D cavitating hydrofoils, J. Mar. Sci. Technol. 16(2): –142.
  • Kinnas, S. A., Fine, N. E. 1990. Non-linear Analysis of Flow Around Partially or Super-Cavitating
  • Hydrofoils by a Potential Based Panel, Proceeding the IABEM-90 Symposium. Katz, Aerodynamics. Cambridge University Press. A. (2001). Low-Speed
There are 18 citations in total.

Details

Other ID JA36TP22BC
Journal Section Research Article
Authors

Mehmet Salih Karaalioğlu This is me

Şakir Bal This is me

Publication Date December 1, 2017
Submission Date December 1, 2017
Published in Issue Year 2017 Volume: 3 Issue: 2

Cite

APA Karaalioğlu, M. S., & Bal, Ş. (2017). Some Remarks on the Three Dimensionality of Hydrofoil Cavitation. Turkish Journal of Maritime and Marine Sciences, 3(2), 113-120.

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).