Research Article
BibTex RIS Cite

Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench

Year 2018, Volume: 4 Issue: 2, 146 - 155, 03.12.2018

Abstract

The aim of this work is to identify main impact factors affecting
variations in the geomorphology of the Mariana Trench which is the deepest
place of the Earth, located in the west Pacific Ocean: steepness angle and
structure of the sediment compression. 
The Mariana Trench presents a complex
ecosystem with highly interconnected factors: geology (sediment thickness and
tectonics including four plates that Mariana trench crosses: Philippine,
Pacific, Mariana, Caroline), bathymetry (coordinates, slope angle, depth values
in the observation points). To study such a complex system, an objective method
combining various approaches (statistics, R, GIS, descriptive analysis and
graphical plotting) was performed. Methodology of the research includes
following clusters: R programming language for writing codes, statistical
analysis, mathematical algorithms for data processing, analysis and visualizing
diagrams, GIS for digitizing bathymetric profiles and spatial analysis. The
statistical analysis of the data taken from the bathymetric profiles was
applied to environmental factors, i.e. coordinates, depths, geological
properties sediment thickness, slope angles, etc. Finally, factor analysis was
performed by R libraries to analyze impact factors of the Mariana Trench ecosystem.
Euler-Venn logical diagrams highlighted similarities between four tectonic
plates and environmental factors. The results revealed distinct correlations
between the environmental factors (sediment thickness, slope steepness,  depth values by observation points,
geographic location of the profiles) affecting Mariana Trench morphology. The research demonstrated that coding on R
language provides a powerful and highly effective statistical tools,
mathematical algorithms of factor analysis to study ocean trench formation.

References

  • Karato, S., Riedel, M.R., Yuen, D.A., (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors 127: 1–7.
  • Deschamps, A. & Lallemand, S. (2003). Geodynamic setting of Izu-Bonin-Mariana boninites. In: Larter, R.D., Leat, P.T. (eds) (2003). Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. Geological Society, London, Special Publications 219: 163-185.
  • Hirano, N., Ogawa, Y., Saito, K., (2002). Long-lived early Cretaceous seamount volcanism in the Mariana Trench, Western Pacific Ocean. Marine Geology 189: 371-379.
  • Curtis, A.C., Moyer, C.L., (2005). Mariana forearc serpentinte mud volcanoes harbor novel communities of extremophilic Archaea[J]. Geomicrobiology Journal 30(5): 430-441.
  • Ishizuka, O., Hickey-Vargas, R., Arculus, R.J., Yogodzinski, G.M., Savov, I.P., Kusano, Y., McCarthy, A., Brandl, Ph., Sudo, M., (2018). Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters 481: 80–90.
  • Pabst, S., Zack, Th., Savov, I.P., Ludwig, Th., Rost, D., Tonarini, S., Vicenzi, E.P., (2012). The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132: 162–179.
  • Ernst, W.G., (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices — implications for arcs and continental growth, Physics of the Earth and Planetary Interiors 127(1–4): 253-275.
  • Eustace, R.M., Ritchie, H., Kilgallen, N.M., Piertney, S.B., Jamieson, A.J., (2016). Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: Lysianassoidea) from the Peru–Chile Trench. Deep-Sea Research I 109: 91–98.
  • Heuret, A., Lallemand, S., (2005). Plate motions, slab dynamics and back-arc deformation. Physics of the Earth and Planetary Interiors 149: 31–51.
  • Schellart, W.P., (2007). The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics 445: 363–372.
  • DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., (1990). Current plate motions, Geophysical Journal International 101: 425-478.
  • Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R.J., Naka, J., Joshima, M., Taylor, R.N., (2010). Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters 294: 111–122.
  • Yoshida, M., (2017). Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. Physics of the Earth and Planetary Interiors 268: 35–53.
  • Faccenna, C., Di Giuseppe, E., Funiciello, F., Lallemand S., van Hunen J., (2009). Control of seafloor aging on the migration of the Izu–Bonin–Mariana trench. Earth and Planetary Science Letters 288: 386–398.
  • Freymuth, H., Vils, F., Willbold, M., Taylor, R. N., Elliott, T., (2015). Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth and Planetary Science Letters 432: 176–186.
  • Cížková, H., Bin, C.R., (2015). Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth and Planetary Science Letters 430: 408–415.
  • Griffiths, R.W., Hackney, R., van der Hilst, R.D., (1995). A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth and Planetary Science Letters 133: 1–17.
  • Samowitz, I.R., Forsyth, D.W., (1981). Double seismic zone beneath the Mariana Island arc. Journal of Geophysical Research 86: 7013–7021.
  • Miller, M., Kennett, B., Lister, G., (2004). Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu–Bonin–Mariana arc. Earth and Planetary Science Letters 224: 363–370
  • Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., (2002). Morphology and origin of the Challenger Deep in the Southern Mariana Trench. Geophysical Research Letters 29 (10): 1372.
  • Funiciello, F., Faccenna, C., Heuret, A., Lallemand, S., Di Giuseppe, E., Becker, T.W., (2008). Trench migration, net rotation and slab–mantle coupling. Earth and Planetary Science Letters 271: 233–240.
  • Heuret, A., Conrad, C.P., Funiciello, F., (2012). Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophysical Research Letters 39(5): 131-138
Year 2018, Volume: 4 Issue: 2, 146 - 155, 03.12.2018

Abstract

References

  • Karato, S., Riedel, M.R., Yuen, D.A., (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors 127: 1–7.
  • Deschamps, A. & Lallemand, S. (2003). Geodynamic setting of Izu-Bonin-Mariana boninites. In: Larter, R.D., Leat, P.T. (eds) (2003). Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. Geological Society, London, Special Publications 219: 163-185.
  • Hirano, N., Ogawa, Y., Saito, K., (2002). Long-lived early Cretaceous seamount volcanism in the Mariana Trench, Western Pacific Ocean. Marine Geology 189: 371-379.
  • Curtis, A.C., Moyer, C.L., (2005). Mariana forearc serpentinte mud volcanoes harbor novel communities of extremophilic Archaea[J]. Geomicrobiology Journal 30(5): 430-441.
  • Ishizuka, O., Hickey-Vargas, R., Arculus, R.J., Yogodzinski, G.M., Savov, I.P., Kusano, Y., McCarthy, A., Brandl, Ph., Sudo, M., (2018). Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters 481: 80–90.
  • Pabst, S., Zack, Th., Savov, I.P., Ludwig, Th., Rost, D., Tonarini, S., Vicenzi, E.P., (2012). The fate of subducted oceanic slabs in the shallow mantle: Insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132: 162–179.
  • Ernst, W.G., (2001). Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices — implications for arcs and continental growth, Physics of the Earth and Planetary Interiors 127(1–4): 253-275.
  • Eustace, R.M., Ritchie, H., Kilgallen, N.M., Piertney, S.B., Jamieson, A.J., (2016). Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: Lysianassoidea) from the Peru–Chile Trench. Deep-Sea Research I 109: 91–98.
  • Heuret, A., Lallemand, S., (2005). Plate motions, slab dynamics and back-arc deformation. Physics of the Earth and Planetary Interiors 149: 31–51.
  • Schellart, W.P., (2007). The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics 445: 363–372.
  • DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., (1990). Current plate motions, Geophysical Journal International 101: 425-478.
  • Ishizuka, O., Yuasa, M., Tamura, Y., Shukuno, H., Stern, R.J., Naka, J., Joshima, M., Taylor, R.N., (2010). Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters 294: 111–122.
  • Yoshida, M., (2017). Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. Physics of the Earth and Planetary Interiors 268: 35–53.
  • Faccenna, C., Di Giuseppe, E., Funiciello, F., Lallemand S., van Hunen J., (2009). Control of seafloor aging on the migration of the Izu–Bonin–Mariana trench. Earth and Planetary Science Letters 288: 386–398.
  • Freymuth, H., Vils, F., Willbold, M., Taylor, R. N., Elliott, T., (2015). Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth and Planetary Science Letters 432: 176–186.
  • Cížková, H., Bin, C.R., (2015). Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth and Planetary Science Letters 430: 408–415.
  • Griffiths, R.W., Hackney, R., van der Hilst, R.D., (1995). A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth and Planetary Science Letters 133: 1–17.
  • Samowitz, I.R., Forsyth, D.W., (1981). Double seismic zone beneath the Mariana Island arc. Journal of Geophysical Research 86: 7013–7021.
  • Miller, M., Kennett, B., Lister, G., (2004). Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu–Bonin–Mariana arc. Earth and Planetary Science Letters 224: 363–370
  • Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., (2002). Morphology and origin of the Challenger Deep in the Southern Mariana Trench. Geophysical Research Letters 29 (10): 1372.
  • Funiciello, F., Faccenna, C., Heuret, A., Lallemand, S., Di Giuseppe, E., Becker, T.W., (2008). Trench migration, net rotation and slab–mantle coupling. Earth and Planetary Science Letters 271: 233–240.
  • Heuret, A., Conrad, C.P., Funiciello, F., (2012). Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophysical Research Letters 39(5): 131-138
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Polina Lemenkova

Publication Date December 3, 2018
Submission Date July 5, 2018
Acceptance Date September 26, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Lemenkova, P. (2018). Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences, 4(2), 146-155.

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).