Research Article
BibTex RIS Cite

Biyodizel pilot yakıtlı doğalgaz motorunda performans karakteristiklerinin Stokastik Reaktör Model kullanılarak incelenmesi

Year 2019, Volume: 5 Issue: 1, 53 - 63, 01.11.2019

Abstract

Bu çalışmada, bir
doğalgaz motorunda farklı biyodizel pilot yakıt püskürtme basınçlarının
performans karakteristiklerine etkileri stokastik reactor modele (SRM) dayanan
‘Kinetics & SRM Engine Suite’ yazılımı kullanılarak incelenmiştir. Motorun
yanma işleminin benzetimini yapmak için bu gelişmiş yazılım yakıtların kimyasal
kinetik mekanizmalarını kullanır. Bu çalışmada, biyodizel yakıtı yansıtmak için
71 bileşen ve 217 reaksiyon içeren ‘Metil dekanoat/metil-9 dekenoat/n-heptan’
kimyasal kinetik mekanizması biyodizelin yerini tutan yakıt kimyasal kinetik
mekanizması olarak tanımlanmıştır. Yazılım araçları vasıtasıyla ayarlanan
teorik model deneysel very aracılığıyla doğrulanmıştır. Sonrasında, biyodizel
pilot yakıtlı doğalgaz motorunun motor performans karakteristiklerini incelemek
için benzetim işlemi üç farklı stokastik parçacık sayısında (50, 100 ve 150)
gerçekleştirilmiştir. Pilot yakıt püskürtme basıncının artmasıyla motor
döndürme momenti ve efektif gücün arttığı fakat özgül yakıt tüketiminin
azaldığı gözlemlenmiştir. Buna ek olarak, simülasyonda kullanılan çeşitli
stokastik parçacık sayılarının benzetimi yapılmış motor performans karakteristik
verilerini önemli ölçüde etkilemediği saptanmıştır.

References

  • Namasivayam, A.M., Korakianitis, T., Crookes, R.J., Bob-Manuel, K.D.H., Olsen, J., (2010). Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines. Applied Energy, 87(3): 769-778. doi:10.1016/j.apenergy.2009.09.014
  • Papagiannakis, R.G., Kotsiopoulos, P.N., Zannis, T.C., Yfantis, E.A., Hountalas, D.T., Rakopoulos, C.D., (2010). Theoretical study of the effects of engine parameters on performance and emissions of a pilot ignited natural gas diesel engine. Energy, 35(2): 1129-1138. doi:10.1016/j.energy.2009.06.006
  • Bissoli, M., Frassoldati, A., Cuoci, A., Ranzi, E., Mehl, M., Faravelli, T., (2016). A new predictive multi-zone model for HCCI engine combustion. Applied Energy, 178: 826-843. doi:10.1016/j.apenergy.2016.06.062
  • Wang, Y., Liu, H., Huang, Z., Liu, Z., (2016). Study on combustion and emission of a dimethyl ether-diesel dual-fuel premixed charge compression ignition combustion engine with LPG (liquefied petroleum gas) as ignition inhibitor. Energy, 96: 278-285. doi:10.1016/j.energy.2015.12.056
  • Li, Y., Jia, M., Chang, Y., Xie, M., Reitz, R.D., (2016). Towards a comprehensive understanding of the influence of fuel properties on the combustion characteristics of a RCCI (reactivity controlled compression ignition) engine. Energy, 99: 69-82. doi:10.1016/j.energy.2016.01.056
  • Park, S.H., Yoon, S.H., (2016). Effect of dual-fuel combustion strategies on combustion and emission characteristics in reactivity controlled compression ignition (RCCI) engine, Fuel, 181: 310-318. doi:10.1016/j.fuel.2016.04.118
  • Dizy, J., Bhave, A., Ooi, D., Soyhan, H.S. 2016. Bringing and combustion characteristics within IC engine simulation and optimization work-flow, 5th International Conference on Fuels, Fire and Combustion in Engineering, İstanbul, TURKEY.
  • Anetor, L., (2012). Comparison of Flow Parameters in Internal Combustion Engines, Arabian Journal for Science and Engineering, 38(2): 285-300. doi:10.1007/s13369-012-0448-2
  • Pasternak, M., Mauss, F., Perlman, C., Lehtiniemi, H., (2014). Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines, Combustion Science and Technology, 186(10-11): 1517-1535. doi:10.1080/00102202.2014.935213
  • Pasternak, M., Mauss, F., Sens, M., Riess, M., Benz, A., Stapf, K.G., (2016). Gasoline engine simulations using zero-dimensional spark ignition stochastic reactor model and three-dimensional computational fluid dynamics engine model, International Journal of Engine Research, 17(1): 76-85.
  • Maurya, R.K., Akhil, N., (2017). Development of a new reduced hydrogen combustion mechanism with NOX and parametric study of hydrogen HCCI combustion using stochastic reactor model, Energy Conversion and Management, 132: 65-81. doi:10.1016/j.enconman.2016.11.021
  • Bhave, A., Balthasar, M., Kraft, M., Mauss, F., (2004). Analysis of a natural gas fuelled homogeneous charge compression ignition engine with exhaust gas recirculation using a stochastic reactor model, International Journal of Engine Research, 5(1): 93-104.
  • Bjerkborn, S., Frojd, K., Perlman, C., Mauss, F., (2012). A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction, SAE Int. J. Engines, 5(4): 1637-1647. doi:10.4271/2012-01-1680
  • Lundgren, M., Tuner, M., Johansson, B., Bjerkborn, S., Frojd, K., Andersson, A., Mauss, F., Jiang, B. 2013. Gasoline PPC: A Parametric Study of Late Cycle Mixing Conditions using a Predictive Two-zone SRM Modeling Tool, SAE Technical Paper, pp. 1-17.
  • Pehlivan, E.F., Altın, İ., Soyhan, H.S., (2016). Investigation of heat release rate of biodiesel pilot fuelled natural gas engine with stochastic reactor model. Uluslararası Yakıtlar, Yanma Ve Yangın Dergisi, 1(4): 14–20.
  • URL-1, Dual Fuel Engines, (2016). 05.06.2016, http://www.wartsila.com/products/marine-oil-gas/engines-generating-sets/dual-fuel-engines
  • URL-2, Dual Fuel Combustion, (2016). 05.06.2016, http://cumminsengines.com/dual-fuel
  • Supee, A., Shafeez, M.S., Mohsin, R., Majid, Z.A., (2014). Performance of Diesel-Compressed Natural Gas (CNG) Dual Fuel (DDF) Engine via CNG-Air Venturi Mixjector Application, Arabian Journal for Science and Engineering, 39(10): 7335-7344. doi:10.1007/s13369-014-1313-2
  • Bora, B.J., Saha, U.K., (2015). Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels, Renewable Energy, 81: 490-498. doi:10.1016/j.renene.2015.03.019
  • Korakianitis, T., Namasivayam, A.M. and Crookes, R.J., (2010). Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel, International Journal of Hydrogen Energy, 35(24): 13329-13344. doi:10.1016/j.ijhydene.2010.08.007
  • Carlucci, A.P., Ficarella, A., Laforgia, D., (2014). Potentialities of a Common Rail Injection System for the Control of Dual Fuel Biodiesel-Producer Gas Combustion and Emissions. Journal of Energy Engineering, 140(3): 1-14. doi:10.1061/(asce)ey.1943-7897.0000150
  • Ryu, K., (2013a). Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel, Energy Conversion and Management, 76: 506-516. doi:10.1016/j.enconman.2013.07.085
  • Ryu, K., (2013b). Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel, Applied Energy, 111: 721-730. doi:10.1016/j.apenergy.2013.05.046
  • Gharehghani, A., Hosseini, R., Mirsalim, M., Jazayeri, S.A., Yusaf, T., (2015). An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas, Energy, 89: 558-567. doi:10.1016/j.energy.2015.06.014
  • Ahmedi, A., Ahmed, S.S., Kalghatgi, G.T., (2015). Simulating combustion in a PCI (premixed compression ignition) engine using DI-SRM and 3 components surrogate model, Combustion and Flame, 162(10): 3728-3739. doi:10.1016/j.combustflame.2015.07.011
  • Maurya, R.K., Akhil, N., (2016). Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism, Energy Conversion and Management, 121: 55-70. doi:10.1016/j.enconman.2016.05.017
  • Franken, T., Klauer, C., Kienberg, M., Matrisciano, A., Mauss, F., (2019). Prediction of thermal stratification in an engine-like geometry using a zero-dimensional stochastic reactor model. International Journal of Engine Research, 1-14 https://doi.org/10.1177/1468087418824217
  • Pope, S.B., (1985). PDF Methods for Turbulent Reactive Flows, Prog. Energy Combust. Sci., 11: 119-192.
  • CMCL, (2013). kinetics & srm engine suite user manual v8.2.9, CMCL Innovations, United Kingdom.
  • Wang, B., Mosbach, S., Schmutzhard, S., Shuai, S., Huang, Y., Kraft, M., (2016). Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model, Applied Energy, 163: 154-166. doi:10.1016/j.apenergy.2015.11.011
  • Tunér, M. (2008). Stochastic Reactor Models for Engine simulations, PhD Thesis, Lund University.
  • Tunér, M., Pasternak, M., Mauss, F., Bensler, H., (2008). A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines, SAE Technical Paper, pp. 1-13.
  • Franken, T., Duggan, A., Feng, T., Borg, A., Lehtiniemi, H., Matrisciano, A., Mauss, F., (2018). Multi-Objective Optimization of Fuel Consumption and NOX Emissions using a Stochastic Reactor Model. THIESEL 2018 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines. Retrieved from: https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/22846
  • Demir, U., Yilmaz, N., Coskun, G., Soyhan, H.S., (2015). Evaluation of zero dimensional codes in simulating IC engines using primary reference fuel, Applied Thermal Engineering, 76: 18-24. doi:10.1016/j.applthermaleng.2014.10.084
  • Strang, G., (1968). On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5(3): 506-517.
  • Heywood, J.B. (1988). Internal Combustion Engine Fundamentals, Mc-Graw Hill, New York.
  • Brakora, J.L. (2012). A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations, PhD Thesis, University of Wisconsin-Madison.
  • Pehlivan, E.F. (2016). Biodiesel pilot fueled natural gas engine simulation using stochastic reactor model (in Turkish), Master of Science Thesis, Karadeniz Technical University.
  • Abd Alla, G.H., Soliman, H.A., Badr, O.A., Abd Rabbo, M.F. (2000). Effect of pilot fuel quantity on the performance of a dual fuel engine, Energy Conversion and Management, 41: 559-572.

Investigation of performance characteristics using Stochastic Reactor Model in a biodiesel pilot-fueled natural gas engine

Year 2019, Volume: 5 Issue: 1, 53 - 63, 01.11.2019

Abstract

In this study, the
effects of different biodiesel pilot fuel injection pressures on performance
characteristics of a natural gas engine were investigated using ‘Kinetics &
SRM Engine Suite’ software which is based on stochastic reactor model (SRM).
This advanced software uses chemical kinetic mechanisms of fuels to simulate
combustion process of the engine. ‘Methyl decanoate/methyl-9-decenoate/n-heptane’
reduced chemical kinetic mechanism including 71 species and 217 reactions were
defined as a biodiesel surrogate fuel chemical kinetic mechanism to represent
biodiesel fuel in this study. Theoretical model set by the way of software
tools was validated by experimental data. Then, simulation was run in three
different stochastic particle numbers (50, 100, and 150) to investigate engine
performance characteristics of a biodiesel pilot-fueled natural gas engine. It
is observed that as pilot fuel injection pressure increases, engine torque and
brake power enhance, but brake specific fuel consumption decreases.
Furthermore, various stochastic particle numbers used in the simulation did not
dramatically affect data of engine performance characteristics simulated.

References

  • Namasivayam, A.M., Korakianitis, T., Crookes, R.J., Bob-Manuel, K.D.H., Olsen, J., (2010). Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines. Applied Energy, 87(3): 769-778. doi:10.1016/j.apenergy.2009.09.014
  • Papagiannakis, R.G., Kotsiopoulos, P.N., Zannis, T.C., Yfantis, E.A., Hountalas, D.T., Rakopoulos, C.D., (2010). Theoretical study of the effects of engine parameters on performance and emissions of a pilot ignited natural gas diesel engine. Energy, 35(2): 1129-1138. doi:10.1016/j.energy.2009.06.006
  • Bissoli, M., Frassoldati, A., Cuoci, A., Ranzi, E., Mehl, M., Faravelli, T., (2016). A new predictive multi-zone model for HCCI engine combustion. Applied Energy, 178: 826-843. doi:10.1016/j.apenergy.2016.06.062
  • Wang, Y., Liu, H., Huang, Z., Liu, Z., (2016). Study on combustion and emission of a dimethyl ether-diesel dual-fuel premixed charge compression ignition combustion engine with LPG (liquefied petroleum gas) as ignition inhibitor. Energy, 96: 278-285. doi:10.1016/j.energy.2015.12.056
  • Li, Y., Jia, M., Chang, Y., Xie, M., Reitz, R.D., (2016). Towards a comprehensive understanding of the influence of fuel properties on the combustion characteristics of a RCCI (reactivity controlled compression ignition) engine. Energy, 99: 69-82. doi:10.1016/j.energy.2016.01.056
  • Park, S.H., Yoon, S.H., (2016). Effect of dual-fuel combustion strategies on combustion and emission characteristics in reactivity controlled compression ignition (RCCI) engine, Fuel, 181: 310-318. doi:10.1016/j.fuel.2016.04.118
  • Dizy, J., Bhave, A., Ooi, D., Soyhan, H.S. 2016. Bringing and combustion characteristics within IC engine simulation and optimization work-flow, 5th International Conference on Fuels, Fire and Combustion in Engineering, İstanbul, TURKEY.
  • Anetor, L., (2012). Comparison of Flow Parameters in Internal Combustion Engines, Arabian Journal for Science and Engineering, 38(2): 285-300. doi:10.1007/s13369-012-0448-2
  • Pasternak, M., Mauss, F., Perlman, C., Lehtiniemi, H., (2014). Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines, Combustion Science and Technology, 186(10-11): 1517-1535. doi:10.1080/00102202.2014.935213
  • Pasternak, M., Mauss, F., Sens, M., Riess, M., Benz, A., Stapf, K.G., (2016). Gasoline engine simulations using zero-dimensional spark ignition stochastic reactor model and three-dimensional computational fluid dynamics engine model, International Journal of Engine Research, 17(1): 76-85.
  • Maurya, R.K., Akhil, N., (2017). Development of a new reduced hydrogen combustion mechanism with NOX and parametric study of hydrogen HCCI combustion using stochastic reactor model, Energy Conversion and Management, 132: 65-81. doi:10.1016/j.enconman.2016.11.021
  • Bhave, A., Balthasar, M., Kraft, M., Mauss, F., (2004). Analysis of a natural gas fuelled homogeneous charge compression ignition engine with exhaust gas recirculation using a stochastic reactor model, International Journal of Engine Research, 5(1): 93-104.
  • Bjerkborn, S., Frojd, K., Perlman, C., Mauss, F., (2012). A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction, SAE Int. J. Engines, 5(4): 1637-1647. doi:10.4271/2012-01-1680
  • Lundgren, M., Tuner, M., Johansson, B., Bjerkborn, S., Frojd, K., Andersson, A., Mauss, F., Jiang, B. 2013. Gasoline PPC: A Parametric Study of Late Cycle Mixing Conditions using a Predictive Two-zone SRM Modeling Tool, SAE Technical Paper, pp. 1-17.
  • Pehlivan, E.F., Altın, İ., Soyhan, H.S., (2016). Investigation of heat release rate of biodiesel pilot fuelled natural gas engine with stochastic reactor model. Uluslararası Yakıtlar, Yanma Ve Yangın Dergisi, 1(4): 14–20.
  • URL-1, Dual Fuel Engines, (2016). 05.06.2016, http://www.wartsila.com/products/marine-oil-gas/engines-generating-sets/dual-fuel-engines
  • URL-2, Dual Fuel Combustion, (2016). 05.06.2016, http://cumminsengines.com/dual-fuel
  • Supee, A., Shafeez, M.S., Mohsin, R., Majid, Z.A., (2014). Performance of Diesel-Compressed Natural Gas (CNG) Dual Fuel (DDF) Engine via CNG-Air Venturi Mixjector Application, Arabian Journal for Science and Engineering, 39(10): 7335-7344. doi:10.1007/s13369-014-1313-2
  • Bora, B.J., Saha, U.K., (2015). Comparative assessment of a biogas run dual fuel diesel engine with rice bran oil methyl ester, pongamia oil methyl ester and palm oil methyl ester as pilot fuels, Renewable Energy, 81: 490-498. doi:10.1016/j.renene.2015.03.019
  • Korakianitis, T., Namasivayam, A.M. and Crookes, R.J., (2010). Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel, International Journal of Hydrogen Energy, 35(24): 13329-13344. doi:10.1016/j.ijhydene.2010.08.007
  • Carlucci, A.P., Ficarella, A., Laforgia, D., (2014). Potentialities of a Common Rail Injection System for the Control of Dual Fuel Biodiesel-Producer Gas Combustion and Emissions. Journal of Energy Engineering, 140(3): 1-14. doi:10.1061/(asce)ey.1943-7897.0000150
  • Ryu, K., (2013a). Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel, Energy Conversion and Management, 76: 506-516. doi:10.1016/j.enconman.2013.07.085
  • Ryu, K., (2013b). Effects of pilot injection timing on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel, Applied Energy, 111: 721-730. doi:10.1016/j.apenergy.2013.05.046
  • Gharehghani, A., Hosseini, R., Mirsalim, M., Jazayeri, S.A., Yusaf, T., (2015). An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas, Energy, 89: 558-567. doi:10.1016/j.energy.2015.06.014
  • Ahmedi, A., Ahmed, S.S., Kalghatgi, G.T., (2015). Simulating combustion in a PCI (premixed compression ignition) engine using DI-SRM and 3 components surrogate model, Combustion and Flame, 162(10): 3728-3739. doi:10.1016/j.combustflame.2015.07.011
  • Maurya, R.K., Akhil, N., (2016). Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism, Energy Conversion and Management, 121: 55-70. doi:10.1016/j.enconman.2016.05.017
  • Franken, T., Klauer, C., Kienberg, M., Matrisciano, A., Mauss, F., (2019). Prediction of thermal stratification in an engine-like geometry using a zero-dimensional stochastic reactor model. International Journal of Engine Research, 1-14 https://doi.org/10.1177/1468087418824217
  • Pope, S.B., (1985). PDF Methods for Turbulent Reactive Flows, Prog. Energy Combust. Sci., 11: 119-192.
  • CMCL, (2013). kinetics & srm engine suite user manual v8.2.9, CMCL Innovations, United Kingdom.
  • Wang, B., Mosbach, S., Schmutzhard, S., Shuai, S., Huang, Y., Kraft, M., (2016). Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model, Applied Energy, 163: 154-166. doi:10.1016/j.apenergy.2015.11.011
  • Tunér, M. (2008). Stochastic Reactor Models for Engine simulations, PhD Thesis, Lund University.
  • Tunér, M., Pasternak, M., Mauss, F., Bensler, H., (2008). A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines, SAE Technical Paper, pp. 1-13.
  • Franken, T., Duggan, A., Feng, T., Borg, A., Lehtiniemi, H., Matrisciano, A., Mauss, F., (2018). Multi-Objective Optimization of Fuel Consumption and NOX Emissions using a Stochastic Reactor Model. THIESEL 2018 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines. Retrieved from: https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/22846
  • Demir, U., Yilmaz, N., Coskun, G., Soyhan, H.S., (2015). Evaluation of zero dimensional codes in simulating IC engines using primary reference fuel, Applied Thermal Engineering, 76: 18-24. doi:10.1016/j.applthermaleng.2014.10.084
  • Strang, G., (1968). On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5(3): 506-517.
  • Heywood, J.B. (1988). Internal Combustion Engine Fundamentals, Mc-Graw Hill, New York.
  • Brakora, J.L. (2012). A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations, PhD Thesis, University of Wisconsin-Madison.
  • Pehlivan, E.F. (2016). Biodiesel pilot fueled natural gas engine simulation using stochastic reactor model (in Turkish), Master of Science Thesis, Karadeniz Technical University.
  • Abd Alla, G.H., Soliman, H.A., Badr, O.A., Abd Rabbo, M.F. (2000). Effect of pilot fuel quantity on the performance of a dual fuel engine, Energy Conversion and Management, 41: 559-572.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Enes Fatih Pehlivan 0000-0003-4956-1098

İsmail Altın 0000-0002-7587-9537

Publication Date November 1, 2019
Submission Date April 1, 2019
Acceptance Date May 13, 2019
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

APA Pehlivan, E. F., & Altın, İ. (2019). Investigation of performance characteristics using Stochastic Reactor Model in a biodiesel pilot-fueled natural gas engine. Turkish Journal of Maritime and Marine Sciences, 5(1), 53-63.

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).