Research Article
BibTex RIS Cite

Investigation of the Genotoxic Effect of Acetamiprid in Cyprinus carpio Using the Micronucleus Analysis and the Comet Assay

Year 2022, Volume: 8 Issue: 2, 80 - 89, 01.12.2022
https://doi.org/10.52998/trjmms.1037906

Abstract

Pesticides are considered to be one of the biggest economic and ecological problems in the aquatic ecosystem. Monitoring for toxic effects and screening for different insecticides is vital and crucial for reducing adverse effects on aquatic organisms and public health. Therefore, in this study, we aimed to determine genotoxic effect of acetamipridine in a model fish species, Cyprinus carpio, using the micronucleus test and Comet assay. Common carp (average weight of 1.35 ±0.11g) were exposed to three different concentrations of acetamipridine (0.2, 0.4, and 0.8 g/L) based on previously detected aquatic environmental concentrations, constituting an acute test for a week. At the end of study, the Damage frequency (%), Arbitrary unit and Genetic damage index (%) were evaluated in gill and liver cells of carp by Comet assay. Also, micronucleus frequencies and erythrocyte abnormalities were determined in erythrocytes cells of carp by micronucleus test. Our results revealed significant increases in the frequencies of micronuclei and DNA strand breaks in C. carpio, following exposure to acetamipridine and thus demonstrated the genotoxic potential of this pesticide on fish. Our findings also indicated the suitability of the fish micronucleus test and comet assay in assessment of aquatic genotoxicity of insecticides.

Supporting Institution

-

Project Number

-

Thanks

Ayşegül ERGENLER, one of the authors, is a PhD student Thanks to the Council of Higher Education for 100/2000 PhD scholarship program for support.

References

  • Abd El Megid, A., Abd Al Fatah, M.E., El Asely, A., El Senosi, Y., Moustafa, M.M., Dawood, M.A., (2020). Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle proteinpatterns of cultured Mugil capito. Ecotoxicology and Environmental Safety 188: 109876.
  • Berheim, E.H., Jenks, J.A., Lundgren, J.G., Michel, E.S., Grove, D., Jensen, W.F., (2019). Effectsofneonicotinoid insecticides on physiology andreproductive characteristics of captive female and fawnwhite-taileddeer. Scientific Reports 9(1): 1-10.
  • Bonomo, M.M., de Castro Sachi, I.T., Paulino, M.G., Fernandes, J.B., Carlos, R.M., Fernandes, M.N., (2021). Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish. Environmental Pollution 268: 115758.
  • Carrasco, K.R., Tilbury, K.L., Myers, M.S., (1990). Assessment of the piscine micronucleus test as an in situbiological indicator of chemical contaminant effects. Canadian Journal of Fisheries and Aquatic Sciences 47(11): 2123-2136.
  • Cavalcante, D.G.S.M., Martinez, C.B.R., Sofia, S.H., (2008). Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 655(1-2): 41-46.
  • Cavas, T., (2011). In vivo genotoxicity evaluation of atrazine and atrazine–based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food and Chemical Toxicology 49(6): 1431-1435.
  • Collins, A.R., (2004). The comet assay for DNA damage and repair. Molecular Biotechnology 26(3): 249-261.
  • Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G., (2020). Toxicity evaluation of theactiveingredient acetamiprid and a commercialformulation (Assail® 70) on the non-target gastropodBiomphalaria straminea (Mollusca: Planorbidae). Ecotoxicology and Environmental Safety 192: 110248.
  • Dhouib, I.B., Annabi, A., Doghri, R., Rejeb, I., Dallagi, Y., Bdiri, Y., Gati, A., (2017). Neuroprotective effects ofcurcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environmental Science and Pollution Research 24(35): 27515-27524.
  • Doltade, S., Lonare, M., Raut, S., Telang, A., (2019). Evaluation of acetamiprid mediated oxidative stress andpathological changes in male rats: ameliorative effect of curcumin. Proceedings of the National Academy of Sciences, IndiaSection B: Biological Sciences 89(1): 191-199.
  • Ghayyur, S., Khan, M.F., Tabassum, S., Ahmad, M.S., Sajid, M., Badshah, K., ... Qamer, S., (2021). Acomparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi Journal of Biological Sciences 28(1): 603-611.
  • Gibbons, D., Morrissey, C., Mineau, P., (2015). A review of the direct and indirect effects of neonicotinoids and fipronilon vertebrate wildlife. Environmental Science and Pollution Research 22(1): 103–118.
  • Gokalp-Muranli, F.D., Göç Rasgele, P., Kekecoglu, M., Kanev M., Ozdemir, K., (2015). Potentıal genotoxıcıty ofacetamiprid and propineb sıngly or ın combınatıon ın cultured human perıpheral blood lymphocytes by usıng mn assay. Fresensius Environmental Bullettin 24: 3947-3955.
  • Guedegba, N.L., Imorou Toko, I., Agbohessi, P.T., Zoumenou, B.S., Douny, C., Mandiki, S.N., Kestemont, P., (2019). Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia (Oreochromis Niloticus) juveniles. Journal of Environmental Science and Health 54(7): 580-589.
  • Hathout, H.M., Sobhy, H.M., Abou-Ghanima, S., El-Garawani, I.M., (2021). Ameliorative role of ascorbic acid onthe oxidative stress and genotoxicity induced by acetamiprid in Nile tilapia (Oreochromis niloticus). Environmental Scienceand Pollution Research 1-13.
  • Hladik, M.L. Main, A.R. Goulson, D., (2018). Environmental risks and challenges associated with 418 neonicotinoidinsecticides. Environmental Science and Technology (6): 3329−3335.
  • Houndji, M.A., Imorou Toko, I., Guedegba, L., Yacouto, E., Agbohessi, P.T., Mandiki, S.N., ... Kestemont, P., (2020). Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish (Clariasgariepinus) juveniles. Journal of Environmental Science and Health 55(7): 669-676.
  • Li, B., Xia, X., Wang, J., Zhu, L., Wang, J., Wang, G., (2018). Evaluation of acetamiprid-induced genotoxic andoxidative responses in Eisenia fetida. Ecotoxicology and Environmental Safety 161: 610-615.
  • Ma, X., Li, H., Xiong, J., Mehler, W.T., You, J., (2019). Developmental toxicity of a neonicotinoid insecticide acetamiprid to zebrafish embryos. Journal of Agricultural And Food Chemistry 67(9): 2429-2436.
  • Norusis M.J., (1993). Advanced Statistics, SPSS for Windows, Release 6.0, p. 578.
  • Mitkovska, V.I., Dimitrov, H.A., Kunchev, A.I., Chassovnikarova, T.G., (2020). Micronucleus Frequency in Rodents with Blood Parasites. Acta Zoologica Bulgarica 15: 33-41.
  • OECD, (1992). Organisation for Economic Co-operation and Development. OECD´s guidelines for the testing of chemicals: 203 acute toxicity test for fish. p.12, Paris, OECD Publishing.
  • Paravani, E.V., Simoniello, M.F., Poletta, G.L., Casco, V.H., (2019). Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicology andEnvironmental Safety 173: 1-7.
  • Pitarque, M., Creus, A., Marcos, R., Hughes, J.A., Anderson, D., (1999). Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personel. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 440(1): 195-204.
  • Prusty, J. K., Patro, S. K., (2015). Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate–A review. Construction and Building Materials 82: 101-113.
  • Rejczak, T., Tuzimski, T., (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry 13.
  • Sandayuk, Ş., Kiliçle, P.A., (2020). Investigation of the genotoxic effect of acetamiprid in mouse bone marrow cells by CA (chromosomal aberration) and MN (micronucleus) test methods. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15(2): 130-137.
  • Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175(1): 184-191.
  • Turan, F., Eken, M., Ozyilmaz, G., Karan, S., Uluca, H., (2020). Heavy metal bioaccumulation, oxidative stress and genotoxicity in African catfish Clarias gariepinus from Orontes river. Ecotoxicology 29(9): 1522-1537.
  • Turan, F., Ergenler, A., (2019). Assessment of DNA damage by comet assay in Trachinotus ovatus cells from Mersin Bay in the Northeastern Mediterranean. Nature and Engineering Sciences 4(3): 25-31.
  • Turgut Meriç, İ., Keskin, E., (2017). Risk assessment of a formamidine pesticide, Amitraz, focusing on thyroid hormone receptors (TRs) in rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology 63(9): 29-34.
  • Vehovszky, Á., Farkas, A., Csikós, V., Székács, A., Mörtl, M., Győri, J., (2018). Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. Aquatic Toxicology 205: 148-155.
  • Wang, K., Pang, S., Mu, X., Qi, S., Li, D., Cui, F., Wang, C., (2015). Biological response of earthworm, Eisenia fetida, to insecticides. Chemosphere 132(1): 120-126.
  • Wanule, D., Siddique, M.S., (2010). Effect of acetamiprid on behavior of fish Channa punctatus. BIOINFOLET - A Quarterly Journal of Life Sciences 7(2): 188.
  • Yamamoto, A., Terao, T., Hisatomi, H., Kawasaki, H., Arakawa, R., (2012). Evaluation of river pollution of neonicotinoids in Osaka city (Japan) by LC/MS with dopant-assisted photoionisation. Journal of Environmental Monitoring 14(8): 2189-2194.
  • Yanar, M., Genç, E., (2004). Farklı sıcaklıklarda kinaldin sülfatı n diazepam ile birlikte kullanılmasının Oreochromis niloticus L. 1758 (Cichlidae) üzerindeki anestezik etkileri. Turk Journal Veterinary Animal Science 28: 1001-1005.
  • Yao X.H., Min, H., Lv, Z.M., (2006). Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomedical Environmental Science 19: 309-314.
  • Zhang, H., Zhao, L., (2017). Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio). Aquatic Toxicology 191: 85-94.
  • Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., Liu, Y.J., (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12(10): 959-965.

Acetamiprid'in Cyprinus carpio da Genotoksik Etkisinin Mikronükleus Analizi ve Comet Testi ile Araştırılması

Year 2022, Volume: 8 Issue: 2, 80 - 89, 01.12.2022
https://doi.org/10.52998/trjmms.1037906

Abstract

Pestisitler, sucul ekosistemlerdeki en büyük ekonomik ve ekolojik sorunlardan biri olarak kabul edilmektedir. Suda yaşayan organizmalar üzerinde farklı insektisitlerin verdiği toksik etki izlenerek zararlı etkilerin azaltılması halk sağlığı açısından önemlidir. Bu çalışmada Asetamiprid’nin model organizma olan Cyprinus carpio'da genotoksik etkilerini Mikronükleus testi ve Comet testi ile belirlenmiştir. Sazan balıkları (ortalama ağırlık 1,35 ± 0,11 g) ortamdaki konsantrasyona bağlı olarak üç farklı asetamipridin konsantrasyonuna (0,2, 0,4 ve 0,8 g/L) maruz bırakılmıştır. Uygulama bir hafta uygulanarak akut test değerlendirmesi yapılmıştır. Çalışmanın sonunda, Sazanların solungaç ve karaciğer dokularına Comet testi uygulanarak Hasar sıklığı (%), Arbitrary unit ve Genetik hasar indeksi (%) değerlendirilmiştir. Ayrıca mikronükleus test tekniği ile sazan balıklarının kırmızı kan hücrelerinde mikronükleus frekansı hesaplanarak eritrosit anormallikleri saptanmıştır. Sonuç olarak; Asetamiprid maruz bırakılan C. carpio'da çekirdek anomaliliği ve DNA yapısında önemli farklılıklar gözlemlenmiştir. Elde edilen bulgular ayrıca; pestisitlerin sucul sistemdeki genotoksik etkilerinin değerlendirilmesinde comet testi ve mikronükleus test tekniğinin uygunluğunu da göstermiştir.

Project Number

-

References

  • Abd El Megid, A., Abd Al Fatah, M.E., El Asely, A., El Senosi, Y., Moustafa, M.M., Dawood, M.A., (2020). Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle proteinpatterns of cultured Mugil capito. Ecotoxicology and Environmental Safety 188: 109876.
  • Berheim, E.H., Jenks, J.A., Lundgren, J.G., Michel, E.S., Grove, D., Jensen, W.F., (2019). Effectsofneonicotinoid insecticides on physiology andreproductive characteristics of captive female and fawnwhite-taileddeer. Scientific Reports 9(1): 1-10.
  • Bonomo, M.M., de Castro Sachi, I.T., Paulino, M.G., Fernandes, J.B., Carlos, R.M., Fernandes, M.N., (2021). Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish. Environmental Pollution 268: 115758.
  • Carrasco, K.R., Tilbury, K.L., Myers, M.S., (1990). Assessment of the piscine micronucleus test as an in situbiological indicator of chemical contaminant effects. Canadian Journal of Fisheries and Aquatic Sciences 47(11): 2123-2136.
  • Cavalcante, D.G.S.M., Martinez, C.B.R., Sofia, S.H., (2008). Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 655(1-2): 41-46.
  • Cavas, T., (2011). In vivo genotoxicity evaluation of atrazine and atrazine–based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food and Chemical Toxicology 49(6): 1431-1435.
  • Collins, A.R., (2004). The comet assay for DNA damage and repair. Molecular Biotechnology 26(3): 249-261.
  • Cossi, P.F., Herbert, L.T., Yusseppone, M.S., Pérez, A.F., Kristoff, G., (2020). Toxicity evaluation of theactiveingredient acetamiprid and a commercialformulation (Assail® 70) on the non-target gastropodBiomphalaria straminea (Mollusca: Planorbidae). Ecotoxicology and Environmental Safety 192: 110248.
  • Dhouib, I.B., Annabi, A., Doghri, R., Rejeb, I., Dallagi, Y., Bdiri, Y., Gati, A., (2017). Neuroprotective effects ofcurcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environmental Science and Pollution Research 24(35): 27515-27524.
  • Doltade, S., Lonare, M., Raut, S., Telang, A., (2019). Evaluation of acetamiprid mediated oxidative stress andpathological changes in male rats: ameliorative effect of curcumin. Proceedings of the National Academy of Sciences, IndiaSection B: Biological Sciences 89(1): 191-199.
  • Ghayyur, S., Khan, M.F., Tabassum, S., Ahmad, M.S., Sajid, M., Badshah, K., ... Qamer, S., (2021). Acomparative study on the effects of selected pesticides on hemato-biochemistry and tissue histology of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Saudi Journal of Biological Sciences 28(1): 603-611.
  • Gibbons, D., Morrissey, C., Mineau, P., (2015). A review of the direct and indirect effects of neonicotinoids and fipronilon vertebrate wildlife. Environmental Science and Pollution Research 22(1): 103–118.
  • Gokalp-Muranli, F.D., Göç Rasgele, P., Kekecoglu, M., Kanev M., Ozdemir, K., (2015). Potentıal genotoxıcıty ofacetamiprid and propineb sıngly or ın combınatıon ın cultured human perıpheral blood lymphocytes by usıng mn assay. Fresensius Environmental Bullettin 24: 3947-3955.
  • Guedegba, N.L., Imorou Toko, I., Agbohessi, P.T., Zoumenou, B.S., Douny, C., Mandiki, S.N., Kestemont, P., (2019). Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia (Oreochromis Niloticus) juveniles. Journal of Environmental Science and Health 54(7): 580-589.
  • Hathout, H.M., Sobhy, H.M., Abou-Ghanima, S., El-Garawani, I.M., (2021). Ameliorative role of ascorbic acid onthe oxidative stress and genotoxicity induced by acetamiprid in Nile tilapia (Oreochromis niloticus). Environmental Scienceand Pollution Research 1-13.
  • Hladik, M.L. Main, A.R. Goulson, D., (2018). Environmental risks and challenges associated with 418 neonicotinoidinsecticides. Environmental Science and Technology (6): 3329−3335.
  • Houndji, M.A., Imorou Toko, I., Guedegba, L., Yacouto, E., Agbohessi, P.T., Mandiki, S.N., ... Kestemont, P., (2020). Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish (Clariasgariepinus) juveniles. Journal of Environmental Science and Health 55(7): 669-676.
  • Li, B., Xia, X., Wang, J., Zhu, L., Wang, J., Wang, G., (2018). Evaluation of acetamiprid-induced genotoxic andoxidative responses in Eisenia fetida. Ecotoxicology and Environmental Safety 161: 610-615.
  • Ma, X., Li, H., Xiong, J., Mehler, W.T., You, J., (2019). Developmental toxicity of a neonicotinoid insecticide acetamiprid to zebrafish embryos. Journal of Agricultural And Food Chemistry 67(9): 2429-2436.
  • Norusis M.J., (1993). Advanced Statistics, SPSS for Windows, Release 6.0, p. 578.
  • Mitkovska, V.I., Dimitrov, H.A., Kunchev, A.I., Chassovnikarova, T.G., (2020). Micronucleus Frequency in Rodents with Blood Parasites. Acta Zoologica Bulgarica 15: 33-41.
  • OECD, (1992). Organisation for Economic Co-operation and Development. OECD´s guidelines for the testing of chemicals: 203 acute toxicity test for fish. p.12, Paris, OECD Publishing.
  • Paravani, E.V., Simoniello, M.F., Poletta, G.L., Casco, V.H., (2019). Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells. Ecotoxicology andEnvironmental Safety 173: 1-7.
  • Pitarque, M., Creus, A., Marcos, R., Hughes, J.A., Anderson, D., (1999). Examination of various biomarkers measuring genotoxic endpoints from Barcelona airport personel. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 440(1): 195-204.
  • Prusty, J. K., Patro, S. K., (2015). Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate–A review. Construction and Building Materials 82: 101-113.
  • Rejczak, T., Tuzimski, T., (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry 13.
  • Sandayuk, Ş., Kiliçle, P.A., (2020). Investigation of the genotoxic effect of acetamiprid in mouse bone marrow cells by CA (chromosomal aberration) and MN (micronucleus) test methods. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15(2): 130-137.
  • Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175(1): 184-191.
  • Turan, F., Eken, M., Ozyilmaz, G., Karan, S., Uluca, H., (2020). Heavy metal bioaccumulation, oxidative stress and genotoxicity in African catfish Clarias gariepinus from Orontes river. Ecotoxicology 29(9): 1522-1537.
  • Turan, F., Ergenler, A., (2019). Assessment of DNA damage by comet assay in Trachinotus ovatus cells from Mersin Bay in the Northeastern Mediterranean. Nature and Engineering Sciences 4(3): 25-31.
  • Turgut Meriç, İ., Keskin, E., (2017). Risk assessment of a formamidine pesticide, Amitraz, focusing on thyroid hormone receptors (TRs) in rainbow trout, Oncorhynchus mykiss. Cellular and Molecular Biology 63(9): 29-34.
  • Vehovszky, Á., Farkas, A., Csikós, V., Székács, A., Mörtl, M., Győri, J., (2018). Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. Aquatic Toxicology 205: 148-155.
  • Wang, K., Pang, S., Mu, X., Qi, S., Li, D., Cui, F., Wang, C., (2015). Biological response of earthworm, Eisenia fetida, to insecticides. Chemosphere 132(1): 120-126.
  • Wanule, D., Siddique, M.S., (2010). Effect of acetamiprid on behavior of fish Channa punctatus. BIOINFOLET - A Quarterly Journal of Life Sciences 7(2): 188.
  • Yamamoto, A., Terao, T., Hisatomi, H., Kawasaki, H., Arakawa, R., (2012). Evaluation of river pollution of neonicotinoids in Osaka city (Japan) by LC/MS with dopant-assisted photoionisation. Journal of Environmental Monitoring 14(8): 2189-2194.
  • Yanar, M., Genç, E., (2004). Farklı sıcaklıklarda kinaldin sülfatı n diazepam ile birlikte kullanılmasının Oreochromis niloticus L. 1758 (Cichlidae) üzerindeki anestezik etkileri. Turk Journal Veterinary Animal Science 28: 1001-1005.
  • Yao X.H., Min, H., Lv, Z.M., (2006). Response of superoxide dismutase, catalase, and ATPase activity in bacteria exposed to acetamiprid. Biomedical Environmental Science 19: 309-314.
  • Zhang, H., Zhao, L., (2017). Influence of sublethal doses of acetamiprid and halosulfuron-methyl on metabolites of zebra fish (Brachydanio rerio). Aquatic Toxicology 191: 85-94.
  • Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., Liu, Y.J., (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12(10): 959-965.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Funda Turan 0000-0002-0257-6009

Ayşegül Ergenler 0000-0001-9186-3909

Project Number -
Publication Date December 1, 2022
Submission Date December 17, 2021
Acceptance Date March 28, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Turan, F., & Ergenler, A. (2022). Investigation of the Genotoxic Effect of Acetamiprid in Cyprinus carpio Using the Micronucleus Analysis and the Comet Assay. Turkish Journal of Maritime and Marine Sciences, 8(2), 80-89. https://doi.org/10.52998/trjmms.1037906

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).