Research Article
BibTex RIS Cite

Dökme yük gemisi için Rejeneratif Organik Rankine Çevrimi Sisteminin Dekarbonizasyon Üzerindeki Etkisinin Araştırılması

Year 2022, Volume: 8 Issue: 2, 90 - 103, 01.12.2022
https://doi.org/10.52998/trjmms.1086444

Abstract

Deniz taşımacılığı dünya ticaretinde çok önemli bir paya sahiptir. Ancak, küresel sera gazı emisyonları üzerinde kaçınılmaz bir etkiye sahiptir. Bu nedenle yakıt tüketiminin ve egzoz emisyonlarının azaltılması için büyük bir motivasyon bulunmaktadır. Organik Rankine Çevrimi (ORC) teknolojisine dayalı atık ısı geri kazanım sistemleri, yakıt tüketimini ve egzoz emisyonlarını azaltmak için önemli bir potansiyele sahiptir. Bu çalışmada, bir dökme yük gemisi için rejeneratif ORC atık ısı geri kazanım sisteminin optimizasyonu gerçekleştirilmiştir. Çok amaçlı optimizasyon, güçlü ve yeni bir algoritma olan Gri Kurt Optimizasyon algoritması kullanılarak gerçekleştirilmiştir. Geminin tasarım ve tasarım-dışı çalışma koşulları dikkate alınarak termoekonomik değerlendirmeler yapılmıştır. Ayrıca, optimize edilmiş ORC sisteminin dekarbonizasyon üzerindeki etkisi araştırılmıştır. Sonuçlar, yıllık ortalama Wnet'in 372.78 kW olarak hesaplandığı göstermiştir. Yıllık ortalama yakıt tasarrufu ve yıllık ortalama CO2 azaltımı ise sırasıyla 522.83 tyakıt/yıl ve 1628.09 tCO2/yıl olarak hesaplanmıştır. Elde edilen bulgular, gemilerde RORC sisteminin kullanılmasının, artan emisyon kısıtlamaları ve çevresel kaygılar için umut verici bir çözüm olduğunu göstermiştir.

Thanks

Bu çalışma Global Maritime Conference (GMC'21) da sunulmuş ve özet olarak yayımlanmıştır.

References

  • Ahlgren, F., Mondejar, M.E., Genrup, M., Thern, M., (2016). Waste heat recovery in a cruise vessel in the Baltic Sea by using an organic Rankine cycle: a case study. Journal of Engineering for Gas Turbines and Power 138 (1): 011702. doi: 10.1115/1.4031145.
  • Akman, M., Ergin, S., (2020). Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships and offshore structures 16(10): 1104-1113. doi: 10.1080/17445302.2020.1816744.
  • Andreasen, J.G., Meroni, A., Haglind, F., (2017). A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships. Energies 10(547): 1-23. doi:10.3390/en10040547.
  • Baldasso, E., Andreasen, J.G., Mondejar, M.E., Larsen, U., Haglind, F., (2019). Technical and economic feasibility of organic Rankine cycle-based waste heat recovery systems on feeder ships: Impact of nitrogen oxides emission abatement technologies. Energy Conversion and Management 183: 577-589. doi: 10.1016/j.enconman.2018.12.114.
  • Baldi, F., Larsen, U., Gabrielii, C., (2015). Comparison of different procedures for the optimisation of a combined Diesel engine and organic Rankine cycle system based on ship operational profile. Ocean Engineering 110: 85-93. doi: 10.1016/j.oceaneng.2015.09.037.
  • Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., (2014). Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Industrial Engineering Chemistry Research 53: 2498-2508. doi: 10.1021/ie4033999.
  • Bergman, T.L., Incropera, F.P., Lavine, A.S., DeWitt, D.P. (2011). Introduction to heat transfer, John Wiley & Sons, 960 p.
  • CEAS, (2021). Accessed Date: 11.11.2021, https://www.manes.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations is retrieved.
  • Civgin, M.G., Deniz, C., (2021). Analyzing the dual-loop organic rankine cycle for waste heat recovery of container vessel. Applied Thermal Engineering 199(117512), 1-10. doi: 10.1016/j.applthermaleng.2021.117512
  • Cooper, M., 1984. Saturation nucleate pool boiling-a simple correlation. International Chemical Engineering Symposium, Vol. 86, pp. 786.
  • de la Fuente, S.S., (2016). Reducing Shipping Carbon Emissions under Real Operative Conditions: A Study of Alternative Marine Waste Heat Recovery Systems based on the Organic Rankine Cycle, PhD. Thesis, University College London, Department of Mechanical Engineering, 326 p.
  • de la Fuente, S.S., Larsen, U., Pierobon, L., Kærn, M. R., Haglind, F., Greig, A., (2017a). Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region. Energy 141: 975-990. doi: 10.1016/j.energy.2017.09.125.
  • de la Fuente, S.S., Roberge, D., Greig, A.R., (2017b). Safety and CO2 emissions: Implications of using organic fluids in a ship’s waste heat recovery system. Marine Policy 75: 191-203. doi: 10.1016/j.marpol.2016.02.008.
  • Gnielinski, V., (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 16 (2): 359-368.
  • Gungor, K.E., Winterton, R., (1986). A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer 29 (3): 351-358. doi: 10.1016/0017-9310(86)90205-X.
  • Lee, S.H., Lim, D.H., Park, K., (2020). Optimization and Economic Analysis for Small-Scale Movable LNG Liquefaction Process with Leakage Considerations. Applied Sciences 10(15): 5391, 1-25. doi: 10.3390/app10155391.
  • Lümmen, N., Nygård, E., Koch, P.E., Nerheim, L.M., (2018). Comparison of organic Rankine cycle concepts for recovering waste heat in a hybrid powertrain on a fast passenger ferry. Energy Conversion and Management 163: 371-383. doi: 10.1016/j.enconman.2018.02.063.
  • Mallouppas, G., Yfantis, E.A., (2021). Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. Journal of Marine Science and Engineering 9(4): 415, 1-40. doi: 10.3390/jmse9040415.
  • MEPC 245(66), (2014). Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships.
  • Mirjalili, S., Mirjalili, S.M., Lewis, A., (2014). Grey wolf optimizer. Advances in engineering software 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007.
  • Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D.S., (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications 47: 106-119. doi: 10.1016/j.eswa.2015.10.039.
  • Mondejar, M.E., Ahlgren, F., Thern, M., Genrup, M., (2017). Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel. Applied Energy 185 (2): 1324-1335. doi: 10.1016/j.apenergy.2016.03.024.
  • Muro, C., Escobedo, R., Spector, L., Coppinger, R., (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural processes 88 (3): 192-197. doi: 10.1016/j.beproc.2011.09.006.
  • Petukhov, B. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. In: “Advances in heat transfer 6th Edition”, pp. 503-564, Elsevier.
  • Pierobon, L., Benato, A., Scolari, E., Haglind, F., Stoppato, A., (2014). Waste heat recovery technologies for offshore platforms. Applied Energy 136: 228-241. doi: 10.1016/j.apenergy.2014.08.109.
  • Shu, G., Liu, P., Tian, H., Wang, X., Jing, D., (2017). Operational profile based thermal-economic analysis on an Organic Rankine cycle using for harvesting marine engine’s exhaust waste heat. Energy Conversion and Management 146: 107-123. doi: 10.1016/j.enconman.2017.04.099.
  • Sinnott, R.K., Coulson, J.M., Richardson, J.F. (2005). Chemical engineering design, Oxford: Elsevier Butterworth-Heinemann.
  • Song, J., Song, Y., Gu, C.W., (2015). Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 82: 976-985. doi: 10.1016/j.energy.2015.01.108.
  • Töz, A., Büber, M., Köseoğlu, B., Şakar, C. (2022) Analysis of Collision Accidents in Maritime Transportation by FTA Method. Turkish Journal of Maritime and Marine Sciences, 1-16.
  • Turton, R., Bailie, R.C., Whiting, W.B., Shaeiwitz, J.A. (2008). Analysis, synthesis and design of chemical processes. Pearson Education.
  • Wang, X.Q., Li, X.P., Li, Y.R., Wu, C.M., (2015). Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery. Energy 88: 734-745. doi: 10.1016/j.energy.2015.05.095.
  • Yang, M.H., Yeh, R.H., (2014). Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system. Energy Conversion and Management 88: 999-1010. doi: 10.1016/j.enconman.2014.09.044.
  • Yang, M.H., Yeh, R.H., (2015a). Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery. Energy 82: 256-268. doi: 10.1016/j.energy.2015.01.036.
  • Yang, M.H., Yeh, R.H., (2015b). Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Applied Energy 149, 1-12. doi: 10.1016/j.apenergy.2015.03.083.

Investigation of the Effect of the Regenerative Organic Rankine Cycle System on Decarbonization for a Bulk Carrier

Year 2022, Volume: 8 Issue: 2, 90 - 103, 01.12.2022
https://doi.org/10.52998/trjmms.1086444

Abstract

Shipping has a very important share in world trade. However, it has an inevitable effect on global greenhouse gas emissions. Therefore, there is a great motivation for the reduction of fuel consumption and exhaust emissions. Waste heat recovery systems based on Organic Rankine Cycle (ORC) technology have a significant potential to reduce fuel consumption and exhaust emissions. In this study, the optimization of the regenerative ORC was carried out for a bulk carrier. Multi-objective optimization was performed using a Grey Wolf Optimization algorithm that is a powerful and novel algorithm. Thermo-economic evaluations were carried out by considering the design and off-design working conditions of the ship. In addition, the impact of the optimized ORC system on decarbonization was investigated. The results showed that the annual average Wnet was determined as 372.78 kW. The annual average fuel saving and the annual average CO2 reduction were calculated as 522.83 tfuel/year and 1628.09 tCO2/year, recpectively. The findings indicated that using the RORC system on ships is a promising solution for increasing emission restrictions and environmental concerns.

References

  • Ahlgren, F., Mondejar, M.E., Genrup, M., Thern, M., (2016). Waste heat recovery in a cruise vessel in the Baltic Sea by using an organic Rankine cycle: a case study. Journal of Engineering for Gas Turbines and Power 138 (1): 011702. doi: 10.1115/1.4031145.
  • Akman, M., Ergin, S., (2020). Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships and offshore structures 16(10): 1104-1113. doi: 10.1080/17445302.2020.1816744.
  • Andreasen, J.G., Meroni, A., Haglind, F., (2017). A comparison of organic and steam Rankine cycle power systems for waste heat recovery on large ships. Energies 10(547): 1-23. doi:10.3390/en10040547.
  • Baldasso, E., Andreasen, J.G., Mondejar, M.E., Larsen, U., Haglind, F., (2019). Technical and economic feasibility of organic Rankine cycle-based waste heat recovery systems on feeder ships: Impact of nitrogen oxides emission abatement technologies. Energy Conversion and Management 183: 577-589. doi: 10.1016/j.enconman.2018.12.114.
  • Baldi, F., Larsen, U., Gabrielii, C., (2015). Comparison of different procedures for the optimisation of a combined Diesel engine and organic Rankine cycle system based on ship operational profile. Ocean Engineering 110: 85-93. doi: 10.1016/j.oceaneng.2015.09.037.
  • Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., (2014). Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Industrial Engineering Chemistry Research 53: 2498-2508. doi: 10.1021/ie4033999.
  • Bergman, T.L., Incropera, F.P., Lavine, A.S., DeWitt, D.P. (2011). Introduction to heat transfer, John Wiley & Sons, 960 p.
  • CEAS, (2021). Accessed Date: 11.11.2021, https://www.manes.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations is retrieved.
  • Civgin, M.G., Deniz, C., (2021). Analyzing the dual-loop organic rankine cycle for waste heat recovery of container vessel. Applied Thermal Engineering 199(117512), 1-10. doi: 10.1016/j.applthermaleng.2021.117512
  • Cooper, M., 1984. Saturation nucleate pool boiling-a simple correlation. International Chemical Engineering Symposium, Vol. 86, pp. 786.
  • de la Fuente, S.S., (2016). Reducing Shipping Carbon Emissions under Real Operative Conditions: A Study of Alternative Marine Waste Heat Recovery Systems based on the Organic Rankine Cycle, PhD. Thesis, University College London, Department of Mechanical Engineering, 326 p.
  • de la Fuente, S.S., Larsen, U., Pierobon, L., Kærn, M. R., Haglind, F., Greig, A., (2017a). Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region. Energy 141: 975-990. doi: 10.1016/j.energy.2017.09.125.
  • de la Fuente, S.S., Roberge, D., Greig, A.R., (2017b). Safety and CO2 emissions: Implications of using organic fluids in a ship’s waste heat recovery system. Marine Policy 75: 191-203. doi: 10.1016/j.marpol.2016.02.008.
  • Gnielinski, V., (1976). New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 16 (2): 359-368.
  • Gungor, K.E., Winterton, R., (1986). A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer 29 (3): 351-358. doi: 10.1016/0017-9310(86)90205-X.
  • Lee, S.H., Lim, D.H., Park, K., (2020). Optimization and Economic Analysis for Small-Scale Movable LNG Liquefaction Process with Leakage Considerations. Applied Sciences 10(15): 5391, 1-25. doi: 10.3390/app10155391.
  • Lümmen, N., Nygård, E., Koch, P.E., Nerheim, L.M., (2018). Comparison of organic Rankine cycle concepts for recovering waste heat in a hybrid powertrain on a fast passenger ferry. Energy Conversion and Management 163: 371-383. doi: 10.1016/j.enconman.2018.02.063.
  • Mallouppas, G., Yfantis, E.A., (2021). Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. Journal of Marine Science and Engineering 9(4): 415, 1-40. doi: 10.3390/jmse9040415.
  • MEPC 245(66), (2014). Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships.
  • Mirjalili, S., Mirjalili, S.M., Lewis, A., (2014). Grey wolf optimizer. Advances in engineering software 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007.
  • Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.D.S., (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications 47: 106-119. doi: 10.1016/j.eswa.2015.10.039.
  • Mondejar, M.E., Ahlgren, F., Thern, M., Genrup, M., (2017). Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel. Applied Energy 185 (2): 1324-1335. doi: 10.1016/j.apenergy.2016.03.024.
  • Muro, C., Escobedo, R., Spector, L., Coppinger, R., (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural processes 88 (3): 192-197. doi: 10.1016/j.beproc.2011.09.006.
  • Petukhov, B. (1970). Heat transfer and friction in turbulent pipe flow with variable physical properties. In: “Advances in heat transfer 6th Edition”, pp. 503-564, Elsevier.
  • Pierobon, L., Benato, A., Scolari, E., Haglind, F., Stoppato, A., (2014). Waste heat recovery technologies for offshore platforms. Applied Energy 136: 228-241. doi: 10.1016/j.apenergy.2014.08.109.
  • Shu, G., Liu, P., Tian, H., Wang, X., Jing, D., (2017). Operational profile based thermal-economic analysis on an Organic Rankine cycle using for harvesting marine engine’s exhaust waste heat. Energy Conversion and Management 146: 107-123. doi: 10.1016/j.enconman.2017.04.099.
  • Sinnott, R.K., Coulson, J.M., Richardson, J.F. (2005). Chemical engineering design, Oxford: Elsevier Butterworth-Heinemann.
  • Song, J., Song, Y., Gu, C.W., (2015). Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines. Energy 82: 976-985. doi: 10.1016/j.energy.2015.01.108.
  • Töz, A., Büber, M., Köseoğlu, B., Şakar, C. (2022) Analysis of Collision Accidents in Maritime Transportation by FTA Method. Turkish Journal of Maritime and Marine Sciences, 1-16.
  • Turton, R., Bailie, R.C., Whiting, W.B., Shaeiwitz, J.A. (2008). Analysis, synthesis and design of chemical processes. Pearson Education.
  • Wang, X.Q., Li, X.P., Li, Y.R., Wu, C.M., (2015). Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery. Energy 88: 734-745. doi: 10.1016/j.energy.2015.05.095.
  • Yang, M.H., Yeh, R.H., (2014). Analyzing the optimization of an organic Rankine cycle system for recovering waste heat from a large marine engine containing a cooling water system. Energy Conversion and Management 88: 999-1010. doi: 10.1016/j.enconman.2014.09.044.
  • Yang, M.H., Yeh, R.H., (2015a). Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery. Energy 82: 256-268. doi: 10.1016/j.energy.2015.01.036.
  • Yang, M.H., Yeh, R.H., (2015b). Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine. Applied Energy 149, 1-12. doi: 10.1016/j.apenergy.2015.03.083.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Samet Gürgen 0000-0001-7036-8829

İsmail Altın 0000-0002-7587-9537

Publication Date December 1, 2022
Submission Date March 11, 2022
Acceptance Date April 22, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Gürgen, S., & Altın, İ. (2022). Investigation of the Effect of the Regenerative Organic Rankine Cycle System on Decarbonization for a Bulk Carrier. Turkish Journal of Maritime and Marine Sciences, 8(2), 90-103. https://doi.org/10.52998/trjmms.1086444

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).