Research Article
BibTex RIS Cite

Renewable energy-based electrical microgrid of cold ironing energy supply for berthed ships

Year 2024, Volume: 10 Issue: 1, 14 - 26, 18.03.2024
https://doi.org/10.52998/trjmms.1372732

Abstract

The importance of ports, which are the gateways between maritime transport and other modes of transport, is growing every day. In addition, the amount of cargo that ports can handle is increasing rapidly every year. At the same time, the need for energy is increasing. Ships hoteling at ports account for a large portion of the power demand at ports. Today, ships hoteling at ports meet their energy needs with their own auxiliary engines running on fossil fuels. In order to achieve decarbonization and zero emissions targets, it is essential to minimize the use of fossil fuels in ports and to increase the use of renewable energy. In this context, meeting the ship's power needs in port through a renewable energy-based microgrid will help reduce emissions. In this study, after determining the energy needs, the scenarios developed with the HOMER program were used to design electrically and economically suitable microgrid systems and to meet the electricity needs of the ships in port using renewable energy.

References

  • Ahamed, A. F., Vibahar, R. R., Purusothaman, S., Gurudevan, M., & Ravivarma, P. (2021). Optimization of Hybrid Microgrid of Renewable Energy Efficiency Using Homer Software. Revista Geintec-Gestao Inovacao E Tecnologias, 11(4), 3427-3441.
  • Akarsu, B., & Genç, M. S. (2022). Optimization of electricity and hydrogen production with hybrid renewable energy systems. Fuel, 324, 124465.
  • Baral, J. R., Behera, S. R., & Kisku, T. (2022). Design and economic optimization of community load based microgrid system using HOMER pro. Paper presented at the 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP).
  • Bayraktar, M., & Yuksel, O. (2023). A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Engineering, 278, 114295.
  • Buonomano, A., Del Papa, G., Giuzio, G. F., Palombo, A., & Russo, G. (2023). Future pathways for decarbonization and energy efficiency of ports: Modelling and optimization as sustainable energy hubs. Journal of Cleaner Production, 420, 138389.
  • Canepa, M., Ballini, F., Dalaklis, D., Frugone, G., & Sciutto, D. (2023). Cold Ironing: Socio-Economic Analysis in the Port of Genoa. Logistics, 7(2), 28.
  • Faber, J., Hanayama, S., Zhang, S., Pereda, P., Comer, B., Hauerhof, E., . . . Kosaka, H. (2020). Reduction of GHG emissions from ships—Fourth IMO GHG study 2020—Final report. IMO MEPC, 75(7), 15.
  • Grzelakowski, A. S., Herdzik, J., & Skiba, S. (2022). Maritime shipping decarbonization: Roadmap to meet zero-emission target in shipping as a link in the global supply chains. Energies, 15(17), 6150.
  • Höhne, N., Gidden, M. J., den Elzen, M., Hans, F., Fyson, C., Geiges, A., . . . Hare, W. (2021). Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 11(10), 820-822.
  • Islam, M. K., Akanto, J. M., Zeyad, M., & Ahmed, S. M. (2021). Optimization of microgrid system for community electrification by using HOMER pro. Paper presented at the 2021 IEEE 9th region 10 humanitarian technology conference (R10-HTC).
  • Ivanova, G. (2021). Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. Paper presented at the 2021 13th Electrical Engineering Faculty Conference (BulEF).
  • Kumar, J., Kumpulainen, L., & Kauhaniemi, K. (2019). Technical design aspects of harbour area grid for shore to ship power: State of the art and future solutions. International Journal of Electrical Power & Energy Systems, 104, 840-852.
  • Lindstad, E., & Bø, T. I. (2018). Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements. Transportation Research Part D: Transport and Environment, 63, 276-290.
  • Lu, H., Xu, Z.-D., Cheng, Y. F., Peng, H., Xi, D., Jiang, X., . . . Shan, Y. (2023). An inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021. Scientific Data, 10(1), 282.
  • Montuori, L., Alcázar-Ortega, M., Álvarez-Bel, C., & Domijan, A. (2014). Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator. Applied Energy, 132, 15-22.
  • Mostafa, M. H., Aleem, S. H. A., Ali, S. G., Ali, Z. M., & Abdelaziz, A. Y. (2020). Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics. Journal of Energy Storage, 29, 101345.
  • Nasab, N. M., & Kilby, J. (2022). Recognizing the Sites with Maximum Power Generation According to Typical Wind Patterns of New Zealand. Chemical Engineering Transactions, 94, 37-42.
  • Restrepo, D., Restrepo-Cuestas, B., & Trejos, A. (2018). Microgrid analysis using HOMER: a case study. Dyna, 85(207), 129-134.
  • Riayatsyah, T., Geumpana, T., Fattah, I. R., Rizal, S., & Mahlia, T. I. (2022). Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability, 14(13), 7735.
  • Sadek, I., & Elgohary, M. (2020). Assessment of renewable energy supply for green ports with a case study. Environmental Science and Pollution Research, 27(5), 5547-5558.
  • Seyhan, A., Ay, C., & Deniz, C. (2022). Assessment of cold ironing as mitigation tool of emissions in port: A Container port case study. Paper presented at the INTERNATIONAL GRADUATE RESEARCH SYMPOSIUM IGRS'22 E-ABSTRACT BOOK.
  • Shahinzadeh, H., Moazzami, M., Fathi, S. H., & Gharehpetian, G. B. (2016). Optimal sizing and energy management of a grid-connected microgrid using HOMER software. Paper presented at the 2016 Smart Grids Conference (SGC).
  • Shilpa, N., & Sridevi, H. (2019). Optimum design of rooftop PV system for an education campus using HOMER. Paper presented at the 2019 Global Conference for Advancement in Technology (GCAT).
  • Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept. Journal of Cleaner Production, 286, 125448.
  • Url-1. Retrieved from https://www.filyosvadisi.com/
  • Wang, S., Psaraftis, H. N., & Qi, J. (2021). Paradox of international maritime organization's carbon intensity indicator. Communications in Transportation Research, 1, 100005.

Gemiler için sahil elektriği tedarikinde yenilenebilir enerji tabanlı mikro şebeke uygulaması

Year 2024, Volume: 10 Issue: 1, 14 - 26, 18.03.2024
https://doi.org/10.52998/trjmms.1372732

Abstract

Deniz taşımacılığı ile sanayi ve diğer taşımacılık yöntemlerini birbirine bağlayan bu sebeple de küresel lojistiğin en önemli bileşenlerinden olan limanlara artan ihtiyaçla birlikte liman tesislerinin önemi gün geçtikçe artmaktadır. Bununla birlikte, limanlarda elleçlenen yük miktarı da her yıl hızla artmaktadır. Artan liman kapasiteleri ile yük elleçleme operasyonlarının her aşamasında gerekli olan enerjiye bağımlılık da önemli oranda artmaktadır. Limanlardaki enerji ihtiyacını oluşturan en önemli unsurlardan birisi yük operasyonları amacıyla limanlarda konaklayan gemilerdir. Limanlardaki gemiler günümüzde enerji ihtiyaçlarını fosil yakıtlarla çalışan kendi yardımcı makineleriyle karşılamaktadır. Karbonsuzlaştırma ve sıfır emisyon hedeflerine ulaşabilmek için limanlarda fosil yakıt kullanımının en aza indirilmesi ve buna karşılık yenilenebilir enerji kullanımının artırılması hayati öneme sahiptir. Bu bağlamda, geminin limandaki güç ihtiyacının yenilenebilir enerji tabanlı bir mikro şebeke aracılığıyla karşılanması, emisyonların azaltılmasına yardımcı olacaktır. Bu çalışmada örnek bir liman sahası için enerji ihtiyaçları belirlendikten sonra HOMER programı ile geliştirilen senaryolar kullanılarak elektriksel ve ekonomik olarak uygun mikro şebeke sistemleri tasarlanmış ve limandaki gemilerin elektrik ihtiyaçlarının yenilenebilir enerji kullanılarak karşılanması hedeflenmiştir.

References

  • Ahamed, A. F., Vibahar, R. R., Purusothaman, S., Gurudevan, M., & Ravivarma, P. (2021). Optimization of Hybrid Microgrid of Renewable Energy Efficiency Using Homer Software. Revista Geintec-Gestao Inovacao E Tecnologias, 11(4), 3427-3441.
  • Akarsu, B., & Genç, M. S. (2022). Optimization of electricity and hydrogen production with hybrid renewable energy systems. Fuel, 324, 124465.
  • Baral, J. R., Behera, S. R., & Kisku, T. (2022). Design and economic optimization of community load based microgrid system using HOMER pro. Paper presented at the 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP).
  • Bayraktar, M., & Yuksel, O. (2023). A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Engineering, 278, 114295.
  • Buonomano, A., Del Papa, G., Giuzio, G. F., Palombo, A., & Russo, G. (2023). Future pathways for decarbonization and energy efficiency of ports: Modelling and optimization as sustainable energy hubs. Journal of Cleaner Production, 420, 138389.
  • Canepa, M., Ballini, F., Dalaklis, D., Frugone, G., & Sciutto, D. (2023). Cold Ironing: Socio-Economic Analysis in the Port of Genoa. Logistics, 7(2), 28.
  • Faber, J., Hanayama, S., Zhang, S., Pereda, P., Comer, B., Hauerhof, E., . . . Kosaka, H. (2020). Reduction of GHG emissions from ships—Fourth IMO GHG study 2020—Final report. IMO MEPC, 75(7), 15.
  • Grzelakowski, A. S., Herdzik, J., & Skiba, S. (2022). Maritime shipping decarbonization: Roadmap to meet zero-emission target in shipping as a link in the global supply chains. Energies, 15(17), 6150.
  • Höhne, N., Gidden, M. J., den Elzen, M., Hans, F., Fyson, C., Geiges, A., . . . Hare, W. (2021). Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 11(10), 820-822.
  • Islam, M. K., Akanto, J. M., Zeyad, M., & Ahmed, S. M. (2021). Optimization of microgrid system for community electrification by using HOMER pro. Paper presented at the 2021 IEEE 9th region 10 humanitarian technology conference (R10-HTC).
  • Ivanova, G. (2021). Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. Paper presented at the 2021 13th Electrical Engineering Faculty Conference (BulEF).
  • Kumar, J., Kumpulainen, L., & Kauhaniemi, K. (2019). Technical design aspects of harbour area grid for shore to ship power: State of the art and future solutions. International Journal of Electrical Power & Energy Systems, 104, 840-852.
  • Lindstad, E., & Bø, T. I. (2018). Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements. Transportation Research Part D: Transport and Environment, 63, 276-290.
  • Lu, H., Xu, Z.-D., Cheng, Y. F., Peng, H., Xi, D., Jiang, X., . . . Shan, Y. (2023). An inventory of greenhouse gas emissions due to natural gas pipeline incidents in the United States and Canada from 1980s to 2021. Scientific Data, 10(1), 282.
  • Montuori, L., Alcázar-Ortega, M., Álvarez-Bel, C., & Domijan, A. (2014). Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator. Applied Energy, 132, 15-22.
  • Mostafa, M. H., Aleem, S. H. A., Ali, S. G., Ali, Z. M., & Abdelaziz, A. Y. (2020). Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics. Journal of Energy Storage, 29, 101345.
  • Nasab, N. M., & Kilby, J. (2022). Recognizing the Sites with Maximum Power Generation According to Typical Wind Patterns of New Zealand. Chemical Engineering Transactions, 94, 37-42.
  • Restrepo, D., Restrepo-Cuestas, B., & Trejos, A. (2018). Microgrid analysis using HOMER: a case study. Dyna, 85(207), 129-134.
  • Riayatsyah, T., Geumpana, T., Fattah, I. R., Rizal, S., & Mahlia, T. I. (2022). Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability, 14(13), 7735.
  • Sadek, I., & Elgohary, M. (2020). Assessment of renewable energy supply for green ports with a case study. Environmental Science and Pollution Research, 27(5), 5547-5558.
  • Seyhan, A., Ay, C., & Deniz, C. (2022). Assessment of cold ironing as mitigation tool of emissions in port: A Container port case study. Paper presented at the INTERNATIONAL GRADUATE RESEARCH SYMPOSIUM IGRS'22 E-ABSTRACT BOOK.
  • Shahinzadeh, H., Moazzami, M., Fathi, S. H., & Gharehpetian, G. B. (2016). Optimal sizing and energy management of a grid-connected microgrid using HOMER software. Paper presented at the 2016 Smart Grids Conference (SGC).
  • Shilpa, N., & Sridevi, H. (2019). Optimum design of rooftop PV system for an education campus using HOMER. Paper presented at the 2019 Global Conference for Advancement in Technology (GCAT).
  • Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept. Journal of Cleaner Production, 286, 125448.
  • Url-1. Retrieved from https://www.filyosvadisi.com/
  • Wang, S., Psaraftis, H. N., & Qi, J. (2021). Paradox of international maritime organization's carbon intensity indicator. Communications in Transportation Research, 1, 100005.
There are 26 citations in total.

Details

Primary Language English
Subjects Ship Energy Efficiency
Journal Section Research Article
Authors

Yunus Emre Şenol 0000-0001-7592-7247

Alper Seyhan 0000-0003-3707-6706

Early Pub Date November 29, 2023
Publication Date March 18, 2024
Submission Date October 7, 2023
Acceptance Date October 27, 2023
Published in Issue Year 2024 Volume: 10 Issue: 1

Cite

APA Şenol, Y. E., & Seyhan, A. (2024). Renewable energy-based electrical microgrid of cold ironing energy supply for berthed ships. Turkish Journal of Maritime and Marine Sciences, 10(1), 14-26. https://doi.org/10.52998/trjmms.1372732

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).