Research Article
BibTex RIS Cite

Yeni Bir Bağlama Noktası Yerleşiminin Bağlama Planı Yük Dağılımına Etkisi

Year 2024, Volume: 10 Issue: 3, 159 - 172, 01.09.2024
https://doi.org/10.52998/trjmms.1396984

Abstract

ÖZET
Limanlarda bağlı gemiler operasyonları süresince sabit tutulmaya çalışılmaktadır. Çevresel ve operasyonel yükler sebebiyle gemi üzerinde oluşan kuvvet ve momentler bağlama halatları ve usturmaçalarla sönümlenmeye çalışılmaktadır. Bu süreçte en aktif görev alan ekipmanların başında ise bağlama halatları gelmektedir. Bağlı gemileri limandan uzaklaştıracak yöndeki kuvvet ve momentler usturmaçaları geçersiz kılarak bu sönümleme işini bağlama halatlarına yıkmaktadır. Bu durumda halatlar üzerinde oluşacak yükün ve bu yükün dağılımının tespiti, halatların yük taşıma sınırlarının varlığı sebebiyle büyük bir önem kazanmaktadır. Çalışmamızda, denizcilik ekosisteminde yaygınlaşan daha büyük gemiler sebebiyle, bir bağlama limanına eklenecek yeni bir bağlama noktasının konum seçimi üzerine araştırmalar yapılmıştır. Seçilen VLCC sınıfı çok büyük ham petrol gemisinin kıç halatı bağlama noktası koordinatları değiştirilerek bağlama halatları üzerindeki etkisi incelenmiştir. Çalışma sonucunda mevcut bağlama planında çalışma kapasitesine %83,3 oranında ulaşmış kritik bir halat yükünün, aynı çevre koşullarında %73,3 seviyesine düşebileceği veya %94,0 seviyesine çıkabileceği keşfedilmiştir. Bu çıktı yeni bir bağlama noktası yerleşiminin, bağlama planı yük dağılımda önemli bir yeri olduğunu ortaya koymaktadır.
Anahtar sözcükler: Gemi Bağlama Analizi, Liman Bağlama Operasyonları, Gemi Bağlama Yükleri Dağılımı, Optimoor

References

  • Aage C. (1971). Wind Coefficients for Nine Ship Models. Danish Technical Press 1-14
  • Abdelwahab, H. S., Pinheiro, L., Santos, J. A., Fortes, C. J. E. M., Guedes Soares, C. (2024). Experimental investigation of wave severity and mooring pretension on the operability of a moored tanker in a port terminal. Ocean Engineering 291: 116243. doi.org/10.1016/j.oceaneng.2023.116243
  • ASCE, (2014). Mooring of Ships to Piers and Wharves (J. W. Gaythwaite (ed.)). American Society of Civil Engineers. doi.org/10.1061/9780784413555
  • Barros, P. W. F., Mazzilli, C. E. N. (2018). The nonlinear dynamic behaviour in an alongside berth mooring arrangement. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(7). doi.org/10.1007/s40430-018-1274-6
  • Blendermann, W. (1994). Parameter identification of wind loads on ships. Journal of Wind Engineering and Industrial Aerodynamics 51(3): 339–351. doi.org/10.1016/0167-6105(94)90067-1
  • Cheng, H., Lin, L., Ong, M. C., Aarsæther, K. G., Sim, J. (2021). Effects of mooring line breakage on dynamic responses of grid moored fish farms under pure current conditions. Ocean Engineering 237: 109638. doi.org/10.1016/j.oceaneng.2021.109638
  • Chung, M., Kim, S., Lee, K., Shin, D. H. (2020). Detection of damaged mooring line based on deep neural networks. Ocean Engineering 209: 107522. doi.org/10.1016/j.oceaneng.2020.107522
  • DDS 582-1 (1987). Calculations for Mooring Systems. Department of the Navy Naval Sea Systems Command Washington, DC. 20362-5101
  • Flory J.F., Ractliffe A.T. (1994). Mooring Arrangement Management by Computer. Paper No.4, Symposium on Ship Operations, Management & Economics, SNAME
  • Flory J.F., Banfield S. P., Ractliffe A.T. (1998). Computer Mooring Load Analysis to Improve Port Operations and Safety, American Society of Civil Engineers
  • Hassani, V., Pascoal, A. M., Sørensen, A. J. (2018). Detection of mooring line failures using Dynamic Hypothesis Testing. Ocean Engineering 159: 496–503. doi.org/10.1016/j.oceaneng.2018.01.021
  • Huang, C., Pan, J. (2010). Mooring line fatigue: A risk analysis for an SPM cage system. Aquacultural Engineering 42(1): 8–16. doi.org/10.1016/j.aquaeng.2009.09.002
  • International Maritime Organization (IMO), Clasifications Register Rules and Regulations - Rules and Regulations for the Classification of Ships, July 2022 - Part 3 Ship Structures (General) - Chapter 1 General - Section 7 Equipment Number (2023a). Erişim Tarihi: 08.10.2023, https://www.imorules.com/LRSHIP_PT3_CH1_7.html#GUID-AB0D9F23-7DD0-4ED6-9A35-AF866AD3EA4D__LRSHIP_PT3_CH1_7.1.1
  • International Maritime Organization (IMO), Clasifications Register Rules and Regulations - Rules and Regulations for the Classification of Ships, July 2022 - Part 3 Ship Structures (General) - Chapter 1 General - Section 7 Equipment (2023b). Erişim Tarihi: 08.10.2023, https://www.imorules.com/LRSHIP_PT3_CH13_7.html#LRSHIP_PT3_CH13_7
  • Isherwood, R. M. (1972). Wind Resistance of Merchant Ships, The Royal Institution of Naval Architects 115: 327-338
  • Jaiswal, V., Ruskin, A. (2019). Mooring Line Failure Detection Using Machine Learning. In Day 1 Mon, May 06, 2019. Offshore Technology Conference. OTC. doi.org/10.4043/29511-ms
  • Kudale, A., Sohoni V., Kulkarni S. (2016). Mooring System for Very Large Ships at Berth, International Journal of Current Engineering and Technology 6(4): 1363-1371
  • Kuzu A., Şenol Y., Arslan Ö. (2018). Bağlama Operasyonları Esnasında Kopan Halat Yaralanmalarının Bulanık Hata Ağacı Yöntemi ile Analizi. Journal of Eta Maritime Science 6(3): 215-227. doi.org/10.5505/jems.2018.58661
  • Lee, K.-H., Han, H.-S., Park, S. (2015). Failure analysis of naval vessel’s mooring system and suggestion of reducing mooring line tension under ocean wave excitation. Engineering Failure Analysis 57: 296–309. doi.org/10.1016/j.engfailanal.2015.08.005
  • Lee, S.-W., Lee, H.-T., Kim, D.-G., Cho, I.-S. (2019). Identification of Impact Factors in Ship-to-Ship Mooring Through Sensitivity Analysis. Journal of Navigation and Port Research, 43(5): 310–319. doi.org/10.5394/KINPR.2019.43.5.310
  • Lee, S.-W., Sasa, K., Aoki, S., Yamamoto, K., Chen, C. (2021). New evaluation of ship mooring with friction effects on mooring rope and cost-benefit estimation to improve port safety. International Journal of Naval Architecture and Ocean Engineering 13: 306–320. doi.org/10.1016/j.ijnaoe.2021.04.002
  • Li Q., Dai R., Chen C. (2015). Anti-typhoon Mooring System for Non-powered Vessels Based on Optimoor Software, Ninth International Conference on Frontier of Computer Science and Technology, Dalian, China, 2015, pp. 200-202, doi.org/10.1109/FCST.2015.38
  • Matakis K. E. (2010). Development of Wind and Current Coefficients for Multiple U.S. Navy Vessel Analysis Using OPTIMOOR. Ports 2010: Building on the Past, Respecting the Future, 406-413. doi.org/10.1061/41098(368)42
  • Natarajan, R., Ganapathy, C. (1995). Analysis of moorings of a berthed ship. Marine Structures 8(5): 481–499. doi.org/10.1016/0951-8339(95)97305-r
  • OCIMF, 2018. Mooring Equipment Guidelines 4th Ed. Oil Companies International Forum. Witherby Seamanship International Ltd., Bermuda
  • OCIMF, 2023. Erişim Tarihi:14.08.2023, https://www.ocimf.org/
  • Saad, A. M., Schopp, F., Barreira, R. A., Santos, I. H. F., Tannuri, E. A., Gomi, E. S., Costa, A. H. R. (2021). Using Neural Network Approaches to Detect Mooring Line Failure. IEEE Access 9: 27678-27695. doi.org/10.1109/access.2021.3058592
  • Sreedevi R., Nallayarasu S. (2023). Investigation on ship mooring forces including passing ship effects validated by experiments. Ocean Engineering 283: 115004. doi.org/10.1016/j.oceaneng.2023.115004
  • Valet, S., Piskoty, G., Michel, S., Affolter, Ch., Beer, M. (2013). Accident caused by dynamic overloading of a ship mooring rope. Engineering Failure Analysis 35: 439–453. doi.org/10.1016/j.engfailanal.2013.03.027
  • Veloso-Gomes, F., Taveira-Pinto, F., Santos, P., Dias, E. Lopes, H. (2005). Berthing Characteristics and the Behaviour of the Oil Terminal of Leixões Harbour, Portugal. Maritime Heritage and Modern Ports. 79. 481-492. ISSN 1743-3509. doi.org/10.2495/MH050451
  • Wang, J., Noh, J. (2022). Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines. Haeyang Hwan’gyeong Anjeon Haghoeji, 28(4): 594–600. doi.org/10.7837/kosomes.2022.28.4.594
  • Zhang, Z., Wang, X., Zhang, X., Zhou, C., Wang, X. (2024). Dynamic responses and mooring line failure analysis of the fully submersible platform for floating wind turbine under typhoon. Engineering Structures 301: 117334. doi.org/10.1016/j.engstruct.2023.117334
  • Turna, İ., Kara, G., Danışman, D. B., (2022). An Empirical Study on the Effects of Sea Ice on Ship Tonnage per Centimeter and Cargo Operations. The Marine Technology Society Journal, 56(4), 128-139

The Effect of a New Mooring Point Location Selection on the Mooring Plan Load Distribution

Year 2024, Volume: 10 Issue: 3, 159 - 172, 01.09.2024
https://doi.org/10.52998/trjmms.1396984

Abstract

ABSTRACT
Ships moored in ports are tried to be kept stable throughout their operations. Forces and moments occurring on the ship due to environmental and operational loads are tried to be damped with mooring ropes and fenders. Mooring ropes are among the most active equipment in this process. The forces and moments that will move the moored ships away from the port render the fenders invalid and leave this damping job to the mooring ropes. In this case, determining the load that will occur on the ropes and the distribution of this load becomes of great importance due to the load carrying limits of the ropes. In our study, research was conducted on the location selection of a new mooring point to be added to a mooring port, due to larger ships becoming more common in the maritime ecosystem. The effect on the mooring ropes of the selected VLCC class very large crude oil ship was examined by changing the stern rope mooring point coordinates. As a result of the study, it was discovered that a critical rope load, which reached 83.3% of its working capacity in the current mooring plan, could decrease to 73.3% or increase to 94.0% under the same environmental conditions. This output reveals that a new mooring point placement has an important position in the mooring plan load distribution.
Keywords: Ship Mooring Analysis, Port Mooring Operations, Ship Mooring Load Distribution, Optimoor

References

  • Aage C. (1971). Wind Coefficients for Nine Ship Models. Danish Technical Press 1-14
  • Abdelwahab, H. S., Pinheiro, L., Santos, J. A., Fortes, C. J. E. M., Guedes Soares, C. (2024). Experimental investigation of wave severity and mooring pretension on the operability of a moored tanker in a port terminal. Ocean Engineering 291: 116243. doi.org/10.1016/j.oceaneng.2023.116243
  • ASCE, (2014). Mooring of Ships to Piers and Wharves (J. W. Gaythwaite (ed.)). American Society of Civil Engineers. doi.org/10.1061/9780784413555
  • Barros, P. W. F., Mazzilli, C. E. N. (2018). The nonlinear dynamic behaviour in an alongside berth mooring arrangement. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(7). doi.org/10.1007/s40430-018-1274-6
  • Blendermann, W. (1994). Parameter identification of wind loads on ships. Journal of Wind Engineering and Industrial Aerodynamics 51(3): 339–351. doi.org/10.1016/0167-6105(94)90067-1
  • Cheng, H., Lin, L., Ong, M. C., Aarsæther, K. G., Sim, J. (2021). Effects of mooring line breakage on dynamic responses of grid moored fish farms under pure current conditions. Ocean Engineering 237: 109638. doi.org/10.1016/j.oceaneng.2021.109638
  • Chung, M., Kim, S., Lee, K., Shin, D. H. (2020). Detection of damaged mooring line based on deep neural networks. Ocean Engineering 209: 107522. doi.org/10.1016/j.oceaneng.2020.107522
  • DDS 582-1 (1987). Calculations for Mooring Systems. Department of the Navy Naval Sea Systems Command Washington, DC. 20362-5101
  • Flory J.F., Ractliffe A.T. (1994). Mooring Arrangement Management by Computer. Paper No.4, Symposium on Ship Operations, Management & Economics, SNAME
  • Flory J.F., Banfield S. P., Ractliffe A.T. (1998). Computer Mooring Load Analysis to Improve Port Operations and Safety, American Society of Civil Engineers
  • Hassani, V., Pascoal, A. M., Sørensen, A. J. (2018). Detection of mooring line failures using Dynamic Hypothesis Testing. Ocean Engineering 159: 496–503. doi.org/10.1016/j.oceaneng.2018.01.021
  • Huang, C., Pan, J. (2010). Mooring line fatigue: A risk analysis for an SPM cage system. Aquacultural Engineering 42(1): 8–16. doi.org/10.1016/j.aquaeng.2009.09.002
  • International Maritime Organization (IMO), Clasifications Register Rules and Regulations - Rules and Regulations for the Classification of Ships, July 2022 - Part 3 Ship Structures (General) - Chapter 1 General - Section 7 Equipment Number (2023a). Erişim Tarihi: 08.10.2023, https://www.imorules.com/LRSHIP_PT3_CH1_7.html#GUID-AB0D9F23-7DD0-4ED6-9A35-AF866AD3EA4D__LRSHIP_PT3_CH1_7.1.1
  • International Maritime Organization (IMO), Clasifications Register Rules and Regulations - Rules and Regulations for the Classification of Ships, July 2022 - Part 3 Ship Structures (General) - Chapter 1 General - Section 7 Equipment (2023b). Erişim Tarihi: 08.10.2023, https://www.imorules.com/LRSHIP_PT3_CH13_7.html#LRSHIP_PT3_CH13_7
  • Isherwood, R. M. (1972). Wind Resistance of Merchant Ships, The Royal Institution of Naval Architects 115: 327-338
  • Jaiswal, V., Ruskin, A. (2019). Mooring Line Failure Detection Using Machine Learning. In Day 1 Mon, May 06, 2019. Offshore Technology Conference. OTC. doi.org/10.4043/29511-ms
  • Kudale, A., Sohoni V., Kulkarni S. (2016). Mooring System for Very Large Ships at Berth, International Journal of Current Engineering and Technology 6(4): 1363-1371
  • Kuzu A., Şenol Y., Arslan Ö. (2018). Bağlama Operasyonları Esnasında Kopan Halat Yaralanmalarının Bulanık Hata Ağacı Yöntemi ile Analizi. Journal of Eta Maritime Science 6(3): 215-227. doi.org/10.5505/jems.2018.58661
  • Lee, K.-H., Han, H.-S., Park, S. (2015). Failure analysis of naval vessel’s mooring system and suggestion of reducing mooring line tension under ocean wave excitation. Engineering Failure Analysis 57: 296–309. doi.org/10.1016/j.engfailanal.2015.08.005
  • Lee, S.-W., Lee, H.-T., Kim, D.-G., Cho, I.-S. (2019). Identification of Impact Factors in Ship-to-Ship Mooring Through Sensitivity Analysis. Journal of Navigation and Port Research, 43(5): 310–319. doi.org/10.5394/KINPR.2019.43.5.310
  • Lee, S.-W., Sasa, K., Aoki, S., Yamamoto, K., Chen, C. (2021). New evaluation of ship mooring with friction effects on mooring rope and cost-benefit estimation to improve port safety. International Journal of Naval Architecture and Ocean Engineering 13: 306–320. doi.org/10.1016/j.ijnaoe.2021.04.002
  • Li Q., Dai R., Chen C. (2015). Anti-typhoon Mooring System for Non-powered Vessels Based on Optimoor Software, Ninth International Conference on Frontier of Computer Science and Technology, Dalian, China, 2015, pp. 200-202, doi.org/10.1109/FCST.2015.38
  • Matakis K. E. (2010). Development of Wind and Current Coefficients for Multiple U.S. Navy Vessel Analysis Using OPTIMOOR. Ports 2010: Building on the Past, Respecting the Future, 406-413. doi.org/10.1061/41098(368)42
  • Natarajan, R., Ganapathy, C. (1995). Analysis of moorings of a berthed ship. Marine Structures 8(5): 481–499. doi.org/10.1016/0951-8339(95)97305-r
  • OCIMF, 2018. Mooring Equipment Guidelines 4th Ed. Oil Companies International Forum. Witherby Seamanship International Ltd., Bermuda
  • OCIMF, 2023. Erişim Tarihi:14.08.2023, https://www.ocimf.org/
  • Saad, A. M., Schopp, F., Barreira, R. A., Santos, I. H. F., Tannuri, E. A., Gomi, E. S., Costa, A. H. R. (2021). Using Neural Network Approaches to Detect Mooring Line Failure. IEEE Access 9: 27678-27695. doi.org/10.1109/access.2021.3058592
  • Sreedevi R., Nallayarasu S. (2023). Investigation on ship mooring forces including passing ship effects validated by experiments. Ocean Engineering 283: 115004. doi.org/10.1016/j.oceaneng.2023.115004
  • Valet, S., Piskoty, G., Michel, S., Affolter, Ch., Beer, M. (2013). Accident caused by dynamic overloading of a ship mooring rope. Engineering Failure Analysis 35: 439–453. doi.org/10.1016/j.engfailanal.2013.03.027
  • Veloso-Gomes, F., Taveira-Pinto, F., Santos, P., Dias, E. Lopes, H. (2005). Berthing Characteristics and the Behaviour of the Oil Terminal of Leixões Harbour, Portugal. Maritime Heritage and Modern Ports. 79. 481-492. ISSN 1743-3509. doi.org/10.2495/MH050451
  • Wang, J., Noh, J. (2022). Calculating the Mooring Force of a Large LNG Ship based on OCIMF Mooring Equipment Guidelines. Haeyang Hwan’gyeong Anjeon Haghoeji, 28(4): 594–600. doi.org/10.7837/kosomes.2022.28.4.594
  • Zhang, Z., Wang, X., Zhang, X., Zhou, C., Wang, X. (2024). Dynamic responses and mooring line failure analysis of the fully submersible platform for floating wind turbine under typhoon. Engineering Structures 301: 117334. doi.org/10.1016/j.engstruct.2023.117334
  • Turna, İ., Kara, G., Danışman, D. B., (2022). An Empirical Study on the Effects of Sea Ice on Ship Tonnage per Centimeter and Cargo Operations. The Marine Technology Society Journal, 56(4), 128-139
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Maritime Transportation Engineering, Ship Manoeuvring and Control, Naval Architecture, Ship and Platform Structures (Incl. Maritime Hydrodynamics), Deck and Navigation Engineering, Maritime Engineering (Other)
Journal Section Research Article
Authors

Kerim Ziylan 0000-0002-9768-6891

Selçuk Nas 0000-0001-5053-4594

Early Pub Date April 18, 2024
Publication Date September 1, 2024
Submission Date November 28, 2023
Acceptance Date April 2, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Ziylan, K., & Nas, S. (2024). Yeni Bir Bağlama Noktası Yerleşiminin Bağlama Planı Yük Dağılımına Etkisi. Turkish Journal of Maritime and Marine Sciences, 10(3), 159-172. https://doi.org/10.52998/trjmms.1396984

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).