Kerevit Kabuklarından Elde Edilen Kitosanın Krem Formülasyonlarındaki Antimikrobiyal Etkileri
Year 2024,
Volume: 10 Issue: 4, 206 - 216, 01.12.2024
Yavuz Mazlum
,
Selin Sayın
,
Betül Aydın
,
Mehmet Naz
,
Metin Yazıcı
,
Şerife Akküçük
Abstract
Bu çalışmanın amacı, kitosan bazlı bir kremin antimikrobiyal özelliklerinin araştırılmasıdır. Bunun için, kitosan ilave edilmiş bir kremin antimikrobiyal etkileri kontrol grubu ile karşılaştırılmıştır. Ana materyal olarak, çalışma kapsamında Eğirdir Gölü'nden dondurulmuş bir şekilde temin edilen kerevitlerden ekstrakte edilen kitosan kullanılmıştır. Çalışma, kontrol (F1) ve muamele (F2) grupları arasında bir karşılaştırmayı içermektedir. Her iki krem formülasyonu da bakteriyel inhibisyon sergilerken, yalnızca F1 formülasyonu C. albicans için canlı mikroorganizmalarda önemli bir azalma göstermiştir. Sitotoksisite değerlendirmesi, örneklerin sitotoksik etkilerinde konsantrasyona bağlı bir artış olduğunu ortaya koymuştur. Özellikle, F1 formülasyonunun sağlıklı hücreler üzerinde F2 formülasyonuna kıyasla daha yüksek bir toksisite sergilediği gözlenmiştir. Sonuç olarak, sitotoksik etkilerinin altında yatan mekanizmaları anlamak ve formülasyonlarını biyouyumluluğu artıracak şekilde optimize etmek için daha fazla araştırma yapılması gerekmektedir. Ayrıca, bu çalışmada geliştirilen kitosan bazlı krem, test edilen bakterilere karşı dikkate değer antimikrobiyal etkinlik göstermiştir.
Project Number
This study was not supported by any organization. There is no project number.
References
- Ahmad, S., Minhas, M.U., Ahmad, M., Sohail, M., Abdullah, O., Badshah, S.F. (2018). Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech, 19: 3199-3209. doi: 10.1208/s12249-018-1131-z.
- Araujo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I.C., Bruhn, A., Fluch, S., Ullmann, J. (2021). Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Frontiers in Marine Science, 7: 626389. doi: 10.3389/fmars.2020.626389.
- Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Okamoto, Y. (2015). Chitin, chitosan, and its derivatives for wound healing: old and new materials. Journal of functional biomaterials, 6(1): 104-142. doi: 10.3390/jfb6010104.
- Bagheri, M., Validi, M., Gholipour, A., Makvandi, P., Sharifi, E. (2022). Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioengineering & translational medicine, 7(1): e10254. doi: 10.1002/btm2.10254.
- Bektas, N., Şenel, B., Yenilmez, E., Özatik, O., Arslan, R. (2020). Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharmaceutical Journal, 28(1): 87-94. doi: 10.1016/j.jsps.2019.11.008.
- Binnewerg, B., Schubert, M., Voronkina, A., Muzychka, L., Wysokowski, M., Petrenko, I., Ehrlich, H. (2020). Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Materials Science and Engineering: C, 109: 110566. doi: 10.1016/j.msec.2019.110566.
- Bohnes, F.A., Hauschild, M.Z., Schlundt, J., Laurent, A. (2019). Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 11(4): 1061-1079. doi: 10.1111/raq.12280.
- Cai, Y.X., Xia, C., Wang, B.Y., Zhang, W., Wang, Y., Zhu, B. (2017). Bioderived calcite as electrolyte for solid oxide fuel cells: a strategy toward utilization of waste shells. ACS Sustainable Chemistry & Engineering 5: 10387–10395. doi: 10.1021/acssuschemeng.7b02406.
- Cai, J., Huang, H., Leung, P. (2019). Understanding and measuring the contribution of aquaculture and fisheries to gross domestic product (GDP). FAO Fisheries and Aquaculture Technical Paper, (606), I-69 and system development. Reviews in Aquaculture, 11(4): 1061-1079.
- Casadidio, C., Peregrina, D.V., Gigliobianco, M.R., Deng, S., Censi, R., Di Martino, P. (2019). Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Marine drugs, 17(6): 369. doi: 10.3390/md17060369.
- Chaiwong, N., Phimolsiripol, Y., Leelapornpisid, P., Ruksiriwanich, W., Jantanasakulwong, K., Rachtanapun, P., Punyodom, W. (2022). Synergistics of carboxymethyl chitosan and mangosteen extract as enhancing moisturizing, antioxidant, antibacterial, and deodorizing properties in emulsion cream. Polymers, 14(1): 178. doi: 10.3390/polym14010178.
- Chen, S., Jiang, S., Jiang, H. (2020). A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. Journal of Bioresources and Bioproducts, 5(4): 238-247. doi: 10.1016/j.jobab.2020.10.002.
- Crandall, K.A., De Grave, S. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidae) of the world, with a complete species list. Journal of Crustacean Biology, 37: 615–653. doi: 10.1093/jcbiol/rux070.
- Dutta, J., Tripathi, S., Dutta, P.K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Science and Technology International, 18(1): 3-34. doi: 10.1177/1082013211399195.
- El-Diasty, E.M., Eleiwa, N.Z., Aideia, H.A. (2012). Using of chitosan as antifungal agent in Kariesh cheese. New York Science Journal, 5(9): 5-10.
- Fang, B., Yu, M., Zhang, W., Wang, F. (2016). A new alternative to cosmetics preservation and the effect of the particle size of the emulsion droplets on preservation efficacy. International Journal of Cosmetic Science, 38(5): 496-503. doi: 10.1111/ics.12317.
- Figiela, M., Wysokowski, M., Galinski, M., Jesionowski, T., Stepniak, I. (2018). Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 272: 296-307. doi: 10.1016/j.snb.2018.05.173.
- FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. doi: 10.4060/cc0461en.
- Gomez, B., Munekata, P.E., Zhu, Z., Barba, F.J., Toldrá, F., Putnik, P., Lorenzo, J.M. (2019). Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. Advances in food and nutrition research, 89: 259-295. doi: 10.1016/bs.afnr.2019.03.003.
- ISO 10993-5. (2009). Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. International Organisation for Standardization.
- Khattak, R.Z., Nawaz, A., Alnuwaiser, M.A., Latif, M.S., Rashid, S.A., Khan, A.A., Alamoudi, S.A. (2022). Formulation, in vitro characterization and antibacterial activity of chitosan-decorated cream containing bacitracin for topical delivery. Antibiotics, 11(9): 1151. doi: 10.3390/antibiotics11091151.
- Kim, J.Y., Jun, J.H., Kim, S.J., Hwang, K.M., Choi, S.R., Han, S.D., Park, E.S. (2015). Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Archives of pharmacal research, 38: 229-238. doi: 10.1007/s12272-014-0368-7.
- Mahdavi, B., Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carumcopticum) under salt stress. EurAsian Journal of BioSciences, 7: 69-76 doi: 10.5053/ejobios.2013.7.0.9.
- Maulu, S., Langi, S., Hasimuna, O.J., Missinhoun, D., Munganga, B.P., Hampuwo, B.M., Dawood, M.A. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition. 11: 334-349. doi: 10.1016/j.aninu.2022.07.013.
- Mazlum, Y., Yazıcı, M., Sayın, S., Habiboğlu, O., Uğur, S. (2020). Effects of two different macroalgae (Ulva lactuca and Jania rubens) species on growth and survival of red swamp crayfish (Procambarus clarkii) as feed additive. Marine Science and Technology Bulletin, 10(2): 154-162. doi: 10.33714/masteb.820627.
- Mazlum, Y., Yazıcı, M., Naz, M., Sayın, S. (2022). Marine biomaterials and their applications. In: “Theory and Research in Agriculture, Forestry and Aquaculture Sciences” (Editors: A. Polat), pp.103-124, İzmir.
- Mazlum, Y., Yazıcı, M. (2023). A Review of Function of Freshwater Crayfish Gastroliths and Their Usage Areas. In: “Pioneer and contemporary studies in agriculture, forest and water issues” (Editors: A. Bobat), pp. 151-170, İzmir.
- Mondéjar-López, M., López-Jiménez, A.J., Martínez, J.C.G., Ahrazem, O., Gómez-Gómez, L., Niza, E. (2022a). Thymoquinone-loaded chitosan nanoparticles as natural preservative agent in cosmetic products. International Journal of Molecular Sciences, 23(2): 898. doi: 10.3390/ijms23020898.
- Mondéjar-López, M., López-Jimenez, A.J., Martínez, J.C.G., Ahrazem, O., Gómez-Gómez, L., Niza, E. (2022b). Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of BiologicalMacromolecules, 206: 288-297. doi: 10.1016/j.ijbiomac.2022.02.164.
- Movaffagh, J., Bazzaz, B. S. F., Taherzadeh, Z., Hashemi, M., Moghaddam, A.S., abbas Tabatabaee, S., Jirofti, N. (2022). Evaluation of wound-healing efficiency of a functional Chitosan/Aloe vera hydrogel on the improvement of re-epithelialization in full thickness wound model of rat. Journal of Tissue Viability, 31(4): 649-656. doi: 10.1016/j.jtv.2022.07.009.
- Muzzarelli, R.A.A., Muzzarelli, C. (2005). Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I: structure, characterization and use, 186: 151-209. doi: 10.1007/b136820.
- Nekvapil, F., Glamuzina, B., Barbu-Tudoran, L., Suciu, M., Tămaş, T., Pinzaru, S.C. (2021). Promoting hidden natural design templates in wasted shells of the mantis shrimp into valuable biogenic composite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 250: 119223. doi: 10.1016/j.saa.2020.119223.
- Nyström, P. 2002. Ecology. In Biology of freshwater crayfish. Edited by D.M. Holdich. Blackwell Science Ltd., pp. 192-235, Oxford.
- Pachapur, V.L., Guemiza, K., Rouissi, T., Sarma, S.J., Brar, S.K. (2016). Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. Journal of Chemical Technology & Biotechnology, 91(8): 2331-2339. doi: 10.1002/jctb.4821.
- Pal, J., Verma, H.O., Munka, V.K., Maurya, S.K., Roy, D., Kumar, J. (2014). Biological method of chitin extraction from shrimp waste an eco-friendly low cost technology and its advanced application. International Journal of Fisheries and Aquatic Studies, 1(6): 104-107.
- Parwati, P., Wikantyasning, E.R. (2023). Optimization of Cream Formulation Containing Peperomia pellucida Leaf Extract and Chitosan Nanoparticles. Tropical Journal of Natural Product Research, 7(11): 5183-5187. doi: 10.26538/tjnpr/v7i11.22.
- Peng, Q., Nunes, L.M., Greenfield, B.K., Dang, F., Zhong, H. (2016). Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility- adjusted probabilistic risk assessment. Environment international, 88: 261-268. doi: 10.1016/j.envint.2015.12.035.
- Pérez-Díaz, M., Alvarado-Gomez, E., Magaña-Aquino, M., Sánchez-Sánchez, R., Velasquillo, C., Gonzalez, C., Martinez-Gutierrez, F. (2016). Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Science and Engineering: C, 60: 317-323. doi: 10.1016/j.msec.2015.11.036.
- Ramírez, M.A., Rodríguez, A.T., Alfonso, L., Peniche, C. (2010). Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnología aplicada, 27(4): 270-276.
- Regueiro, L., Newton, R., Soula, M., Mendez, D., Kok, B., Little, D.C., Ferreira, M. (2022). Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. Journal of Industrial Ecology, 26(6): 2033-2044. doi: 10.1111/jiec.13188.
- Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A., Ross, K., Al-Kassas, R. (2021). Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European journal of pharmaceutical Sciences, 160: 105765. doi: 10.1016/j.ejps.2021.105765.
- Troell, M., Jonell, M., Crona, B. (2019). The role of seafood in sustainable and healthy diets. The EAT-Lancet Commission report Through a Blue Lens. Stockholm: The Beijer Institute. doi: 10.1088/1748-9326/ac3954.
- Trung, T.S., Van Tan, N., Van Hoa, N., Minh, N.C., Loc, P.T., Stevens, W.F. (2020). Improved method for production of chitin and chitosan from shrimp shells. Carbohydrate research, 489: 107913. doi:10.1016/j.carres.2020.107913.
- Wisuitiprot, W., Ingkaninan, K., Jones, S., Waranuch, N. (2022). Effect of green tea extract loaded chitosan microparticles on facial skin: A split‐face, double‐blind, randomized placebo‐controlled study. Journal of Cosmetic Dermatology, 21(9): 4001. doi: 10.1111/jocd.14707.
- Zeng, D., Mei, X., Wu, J. (2010). Effects of an environmentally friendly seed coating agent on combating head smut of corn caused by Sphacelotheca reiliana and corn growth. Journal of Agricultural Biotechnology and Sustainable Development, 2(6): 108.
Antimicrobial Effects of Chitosan Extracted from Crayfish Shells in Cream Formulations
Year 2024,
Volume: 10 Issue: 4, 206 - 216, 01.12.2024
Yavuz Mazlum
,
Selin Sayın
,
Betül Aydın
,
Mehmet Naz
,
Metin Yazıcı
,
Şerife Akküçük
Abstract
The objective of the present study was to investigate the antimicrobial properties of a chitosan-based cream. To achieve this, the antimicrobial effects of a cream enriched with chitosan were compared with those of a control group. Chitosan, sourced from crayfish obtained frozen from Eğirdir Lake, Eğirdir, Isparta, served as the primary material. The study involved a comparison between control (F1) and treatment (F2) groups. While both cream formulations exhibited bacterial inhibition, only the F1 formulation demonstrated a significant reduction in viable microorganisms for C. albicans. The cytotoxicity assessment revealed a concentration-dependent increase in the cytotoxic effects of the samples. Notably, the F1 formulation exhibited higher toxicity to healthy cells compared to the F2 formulation. In conclusion, further investigation is necessary to understand the mechanisms underlying their cytotoxic effects and to optimize their formulations to enhance biocompatibility. Moreover, the chitosan-based cream developed in this study demonstrated notable antimicrobial efficacy against the tested bacteria.
Ethical Statement
Ethics committee permission is not required for this study.
Supporting Institution
This study was not supported by any organization
Project Number
This study was not supported by any organization. There is no project number.
References
- Ahmad, S., Minhas, M.U., Ahmad, M., Sohail, M., Abdullah, O., Badshah, S.F. (2018). Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech, 19: 3199-3209. doi: 10.1208/s12249-018-1131-z.
- Araujo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I.C., Bruhn, A., Fluch, S., Ullmann, J. (2021). Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Frontiers in Marine Science, 7: 626389. doi: 10.3389/fmars.2020.626389.
- Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., Okamoto, Y. (2015). Chitin, chitosan, and its derivatives for wound healing: old and new materials. Journal of functional biomaterials, 6(1): 104-142. doi: 10.3390/jfb6010104.
- Bagheri, M., Validi, M., Gholipour, A., Makvandi, P., Sharifi, E. (2022). Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioengineering & translational medicine, 7(1): e10254. doi: 10.1002/btm2.10254.
- Bektas, N., Şenel, B., Yenilmez, E., Özatik, O., Arslan, R. (2020). Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharmaceutical Journal, 28(1): 87-94. doi: 10.1016/j.jsps.2019.11.008.
- Binnewerg, B., Schubert, M., Voronkina, A., Muzychka, L., Wysokowski, M., Petrenko, I., Ehrlich, H. (2020). Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Materials Science and Engineering: C, 109: 110566. doi: 10.1016/j.msec.2019.110566.
- Bohnes, F.A., Hauschild, M.Z., Schlundt, J., Laurent, A. (2019). Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 11(4): 1061-1079. doi: 10.1111/raq.12280.
- Cai, Y.X., Xia, C., Wang, B.Y., Zhang, W., Wang, Y., Zhu, B. (2017). Bioderived calcite as electrolyte for solid oxide fuel cells: a strategy toward utilization of waste shells. ACS Sustainable Chemistry & Engineering 5: 10387–10395. doi: 10.1021/acssuschemeng.7b02406.
- Cai, J., Huang, H., Leung, P. (2019). Understanding and measuring the contribution of aquaculture and fisheries to gross domestic product (GDP). FAO Fisheries and Aquaculture Technical Paper, (606), I-69 and system development. Reviews in Aquaculture, 11(4): 1061-1079.
- Casadidio, C., Peregrina, D.V., Gigliobianco, M.R., Deng, S., Censi, R., Di Martino, P. (2019). Chitin and chitosans: Characteristics, eco-friendly processes, and applications in cosmetic science. Marine drugs, 17(6): 369. doi: 10.3390/md17060369.
- Chaiwong, N., Phimolsiripol, Y., Leelapornpisid, P., Ruksiriwanich, W., Jantanasakulwong, K., Rachtanapun, P., Punyodom, W. (2022). Synergistics of carboxymethyl chitosan and mangosteen extract as enhancing moisturizing, antioxidant, antibacterial, and deodorizing properties in emulsion cream. Polymers, 14(1): 178. doi: 10.3390/polym14010178.
- Chen, S., Jiang, S., Jiang, H. (2020). A review on conversion of crayfish-shell derivatives to functional materials and their environmental applications. Journal of Bioresources and Bioproducts, 5(4): 238-247. doi: 10.1016/j.jobab.2020.10.002.
- Crandall, K.A., De Grave, S. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidae) of the world, with a complete species list. Journal of Crustacean Biology, 37: 615–653. doi: 10.1093/jcbiol/rux070.
- Dutta, J., Tripathi, S., Dutta, P.K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Science and Technology International, 18(1): 3-34. doi: 10.1177/1082013211399195.
- El-Diasty, E.M., Eleiwa, N.Z., Aideia, H.A. (2012). Using of chitosan as antifungal agent in Kariesh cheese. New York Science Journal, 5(9): 5-10.
- Fang, B., Yu, M., Zhang, W., Wang, F. (2016). A new alternative to cosmetics preservation and the effect of the particle size of the emulsion droplets on preservation efficacy. International Journal of Cosmetic Science, 38(5): 496-503. doi: 10.1111/ics.12317.
- Figiela, M., Wysokowski, M., Galinski, M., Jesionowski, T., Stepniak, I. (2018). Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 272: 296-307. doi: 10.1016/j.snb.2018.05.173.
- FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. doi: 10.4060/cc0461en.
- Gomez, B., Munekata, P.E., Zhu, Z., Barba, F.J., Toldrá, F., Putnik, P., Lorenzo, J.M. (2019). Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects. Advances in food and nutrition research, 89: 259-295. doi: 10.1016/bs.afnr.2019.03.003.
- ISO 10993-5. (2009). Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. International Organisation for Standardization.
- Khattak, R.Z., Nawaz, A., Alnuwaiser, M.A., Latif, M.S., Rashid, S.A., Khan, A.A., Alamoudi, S.A. (2022). Formulation, in vitro characterization and antibacterial activity of chitosan-decorated cream containing bacitracin for topical delivery. Antibiotics, 11(9): 1151. doi: 10.3390/antibiotics11091151.
- Kim, J.Y., Jun, J.H., Kim, S.J., Hwang, K.M., Choi, S.R., Han, S.D., Park, E.S. (2015). Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Archives of pharmacal research, 38: 229-238. doi: 10.1007/s12272-014-0368-7.
- Mahdavi, B., Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carumcopticum) under salt stress. EurAsian Journal of BioSciences, 7: 69-76 doi: 10.5053/ejobios.2013.7.0.9.
- Maulu, S., Langi, S., Hasimuna, O.J., Missinhoun, D., Munganga, B.P., Hampuwo, B.M., Dawood, M.A. (2022). Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. Animal Nutrition. 11: 334-349. doi: 10.1016/j.aninu.2022.07.013.
- Mazlum, Y., Yazıcı, M., Sayın, S., Habiboğlu, O., Uğur, S. (2020). Effects of two different macroalgae (Ulva lactuca and Jania rubens) species on growth and survival of red swamp crayfish (Procambarus clarkii) as feed additive. Marine Science and Technology Bulletin, 10(2): 154-162. doi: 10.33714/masteb.820627.
- Mazlum, Y., Yazıcı, M., Naz, M., Sayın, S. (2022). Marine biomaterials and their applications. In: “Theory and Research in Agriculture, Forestry and Aquaculture Sciences” (Editors: A. Polat), pp.103-124, İzmir.
- Mazlum, Y., Yazıcı, M. (2023). A Review of Function of Freshwater Crayfish Gastroliths and Their Usage Areas. In: “Pioneer and contemporary studies in agriculture, forest and water issues” (Editors: A. Bobat), pp. 151-170, İzmir.
- Mondéjar-López, M., López-Jiménez, A.J., Martínez, J.C.G., Ahrazem, O., Gómez-Gómez, L., Niza, E. (2022a). Thymoquinone-loaded chitosan nanoparticles as natural preservative agent in cosmetic products. International Journal of Molecular Sciences, 23(2): 898. doi: 10.3390/ijms23020898.
- Mondéjar-López, M., López-Jimenez, A.J., Martínez, J.C.G., Ahrazem, O., Gómez-Gómez, L., Niza, E. (2022b). Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of BiologicalMacromolecules, 206: 288-297. doi: 10.1016/j.ijbiomac.2022.02.164.
- Movaffagh, J., Bazzaz, B. S. F., Taherzadeh, Z., Hashemi, M., Moghaddam, A.S., abbas Tabatabaee, S., Jirofti, N. (2022). Evaluation of wound-healing efficiency of a functional Chitosan/Aloe vera hydrogel on the improvement of re-epithelialization in full thickness wound model of rat. Journal of Tissue Viability, 31(4): 649-656. doi: 10.1016/j.jtv.2022.07.009.
- Muzzarelli, R.A.A., Muzzarelli, C. (2005). Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I: structure, characterization and use, 186: 151-209. doi: 10.1007/b136820.
- Nekvapil, F., Glamuzina, B., Barbu-Tudoran, L., Suciu, M., Tămaş, T., Pinzaru, S.C. (2021). Promoting hidden natural design templates in wasted shells of the mantis shrimp into valuable biogenic composite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 250: 119223. doi: 10.1016/j.saa.2020.119223.
- Nyström, P. 2002. Ecology. In Biology of freshwater crayfish. Edited by D.M. Holdich. Blackwell Science Ltd., pp. 192-235, Oxford.
- Pachapur, V.L., Guemiza, K., Rouissi, T., Sarma, S.J., Brar, S.K. (2016). Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. Journal of Chemical Technology & Biotechnology, 91(8): 2331-2339. doi: 10.1002/jctb.4821.
- Pal, J., Verma, H.O., Munka, V.K., Maurya, S.K., Roy, D., Kumar, J. (2014). Biological method of chitin extraction from shrimp waste an eco-friendly low cost technology and its advanced application. International Journal of Fisheries and Aquatic Studies, 1(6): 104-107.
- Parwati, P., Wikantyasning, E.R. (2023). Optimization of Cream Formulation Containing Peperomia pellucida Leaf Extract and Chitosan Nanoparticles. Tropical Journal of Natural Product Research, 7(11): 5183-5187. doi: 10.26538/tjnpr/v7i11.22.
- Peng, Q., Nunes, L.M., Greenfield, B.K., Dang, F., Zhong, H. (2016). Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility- adjusted probabilistic risk assessment. Environment international, 88: 261-268. doi: 10.1016/j.envint.2015.12.035.
- Pérez-Díaz, M., Alvarado-Gomez, E., Magaña-Aquino, M., Sánchez-Sánchez, R., Velasquillo, C., Gonzalez, C., Martinez-Gutierrez, F. (2016). Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Materials Science and Engineering: C, 60: 317-323. doi: 10.1016/j.msec.2015.11.036.
- Ramírez, M.A., Rodríguez, A.T., Alfonso, L., Peniche, C. (2010). Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnología aplicada, 27(4): 270-276.
- Regueiro, L., Newton, R., Soula, M., Mendez, D., Kok, B., Little, D.C., Ferreira, M. (2022). Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. Journal of Industrial Ecology, 26(6): 2033-2044. doi: 10.1111/jiec.13188.
- Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A., Ross, K., Al-Kassas, R. (2021). Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European journal of pharmaceutical Sciences, 160: 105765. doi: 10.1016/j.ejps.2021.105765.
- Troell, M., Jonell, M., Crona, B. (2019). The role of seafood in sustainable and healthy diets. The EAT-Lancet Commission report Through a Blue Lens. Stockholm: The Beijer Institute. doi: 10.1088/1748-9326/ac3954.
- Trung, T.S., Van Tan, N., Van Hoa, N., Minh, N.C., Loc, P.T., Stevens, W.F. (2020). Improved method for production of chitin and chitosan from shrimp shells. Carbohydrate research, 489: 107913. doi:10.1016/j.carres.2020.107913.
- Wisuitiprot, W., Ingkaninan, K., Jones, S., Waranuch, N. (2022). Effect of green tea extract loaded chitosan microparticles on facial skin: A split‐face, double‐blind, randomized placebo‐controlled study. Journal of Cosmetic Dermatology, 21(9): 4001. doi: 10.1111/jocd.14707.
- Zeng, D., Mei, X., Wu, J. (2010). Effects of an environmentally friendly seed coating agent on combating head smut of corn caused by Sphacelotheca reiliana and corn growth. Journal of Agricultural Biotechnology and Sustainable Development, 2(6): 108.