Research Article
BibTex RIS Cite

Numerical Investigation of Buoyancy-Induced 3D Flow and Heat Transfer from Heating Coils in Ship Cargo Tanks

Year 2025, Volume: 11 Issue: 3, 198 - 215, 01.09.2025
https://doi.org/10.52998/trjmms.1698686

Abstract

Ship cargo tanks are equipped with means to increase and maintain the cargo discharge temperature to a suitable level. In this study, the heat transfer by transient natural convection from heating coils in a non-corrugated cargo tank of a chemical tanker was numerically investigated for different Rayleigh numbers (4.14x106≤ RaD ≤1.5x108) and boundary conditions. The heating coils were distributed uniformly on the tank bottom. The heating coils were heated isothermally, and different boundary conditions were used in the double-side, deck and double-bottom sections of the tank. Heavy fuel oil was used as the working fluid. The three-dimensional transient continuity, momentum, and energy equations were solved using the finite volume method. The numerical simulations performed using the finite volume method show that the time-averaged heat transfer coefficient on the heating coil is equal to 34.62 W/m2K for RaD=4.14x106, 88.90 W/m2K for RaD=2.47x107 and 103.79 W/m2K for RaD=1.5x108 in the case of the 2-h heating of heavy fuel oil. It is observed that the heat loss through the tank walls does not have a significant effect on the time-averaged heat transfer coefficient value obtained from the heating coils. The relevant research results will provide theoretical and technical support in the calculation of the average heating load in cargo tanks.

Supporting Institution

İzmir Katip Çelebi University

Project Number

2023-GAP-GIDF-0010

References

  • Akagi, S., Kato, H. (1987). Numerical analysis of mixed convection heat transfer of a high viscosity fluid in a rectangular tank with rolling motion. International Journal of Heat and Mass Transfer, 30(11): 2423–2432. doi: 10.1016/0017-9310(87)90232-8.
  • Akagi, S., Uchida, K. (1987). Fluid motion and heat transfer of a high-viscosity fluid in a rectangular tank on a ship with oscillating motion. Journal of Heat Transfer, 109(3): 635–641. doi: 10.1115/1.3248135.
  • Altaç, Z., Uǧurlubilek, N. (2016). Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. International Journal of Thermal Sciences, 107: 237–246. doi: 10.1016/j.ijthermalsci.2016.04.016.
  • Arpaci, V.S., Shu-Hsin, K., Selamet, A. (2000). Introduction to heat transfer, First Edition, 632 p., Pearson, ISBN: 9780133910612.
  • Çengel, A.Y., Ghajar, J.A. (2015). Heat and Mass Transfer: Fundamentals and Applications, Fifth edition, 992 p., Mc Graw Hill, ISBN: 0073398187.
  • Churchill, S.W., Chu, H.H.S. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18(11): 1323–1329. doi: 10.1016/0017-9310(75)90243-4.
  • Córdoba, P.A., Silin, N., Dari, E.A. (2015). Natural convection in a cubical cavity filled with a fluid showing temperature-dependent viscosity. International Journal of Thermal Sciences, 98: 255–265. doi: 10.1016/j.ijthermalsci.2015.07.007.
  • Cotter, M.A., Charles, M.E. (1992). Cylindrical Storage Tanks : Transient Cooling of Petroleum by Natural Convection in Cylindrical Storage Tanks: A Simplified Heat Loss Model. The Canadian Journal of Chemical Engineering 70: 1090–1093.
  • De Césaro Oliveski, R., MacAgnan, M.H., Copetti, J.B., De La Martinière Petroll, A. (2005). Natural convection in a tank of oil: Experimental validation of a numerical code with prescribed boundary condition. Experimental Thermal and Fluid Science, 29(6): 671–680. doi: 10.1016/j.expthermflusci.2004.10.003.
  • Gao, J., Wu, W., Zhang, J., Tu, J., Wang, X., Yang, S. (2019). Numerical simulation analysis of oil heating process of oil tanker in Arctic route. Proceedings - 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2019, pp. 420–423. doi: 10.1109/WCMEIM48965.2019.00089.
  • Hmouda, I., Rodriguez, I., Bouden, C., Oliva, A. (2010). Unsteady natural convection cooling of a water storage tank with an internal gas flue. International Journal of Thermal Sciences, 49(1): 36–47. doi: 10.1016/j.ijthermalsci.2009.05.011.
  • Li, D., Yu, Y., Wu, Y., Zhao, X., Meng, L., Wang, Q., Arıcı, M. (2023). Thermo-economics evalation of crude oil heating arranged with finned coil in floating roof tank. Journal of Cleaner Production, 415: 137802. doi: 10.1016/j.jclepro.2023.137802.
  • Magazinovic, G. (2018a). Cargo Tank Heating Using Vertically Arranged Heating Coils, Proceedings of the 23rd Symposium on Theory and Practice of Shipbuilding, 27-29 September 2018, pp. 349–356.
  • Magazinović, G. 2018b. “Multi level heating coil bundle”. Patent No. WO 2018/234380 A1.
  • Magazinović, G. (2019). Vertical arrangement of coils for efficient cargo tank heating. International Journal of Naval Architecture and Ocean Engineering, 11(2): 662-670. doi: 10.1016/j.ijnaoe.2019.02.004.
  • Magazinović, G. (2020). Circulation-Enhanced Tank Heating Using Shallow Profile Coil Bundles. Journal of Marine Science and Application, 19(2): 234–245. doi: 10.1007/s11804-020-00149-z.
  • Magazinović, G. (2021). Multi-level Coil Bundle for Efficient Cargo Tank Heating. Journal of Marine Science and Application, 20(3): 467–476. doi: 10.1007/s11804-021-00215-0.
  • Maritime Safety Committee (MSC), (2014). Amendments To The International Code For The Construction And Equipment Of Ships Carrying Liquefied Gases In Bulk (Igc Code), Vol. 1, Issue 22 Jan.
  • Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8): 1598–1605. doi: 10.2514/3.12149.
  • Mohn, F. 1971. "System for lasting, lossing,sirkulasjon og oppvarming av en flytende last i en skipstank". Patent No. 1211316.
  • Ponton, G.E. (1982). Reducing Fuel Consumption for Liquid Cargo Heating Systems. Marine Technology, 19(N 4): 377–386. doi: 10.5957/mt1.1982.19.4.377.
  • Rodríguez, I., Castro, J., Pérez-Segarra, C.D., Oliva, A. (2009). Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. International Journal of Thermal Sciences, 48(4): 708–721. doi: 10.1016/j.ijthermalsci.2008.06.002.
  • Sahin, K., (2015). Analysis of heat transfer in crude oil tanker’s cargo tanks and cargo heating system. MSc Thesis, Istanbul Technical University.
  • Sahin, K., Ergin S. (2019). Numerical Study on Natural Convection in a Ship Cargo Tank. Sustainable Development and Innovations in Marine Technologies - Proceedings of the 18th International Congress of the International Maritime Association of the Mediterranean (IMAM), pp. 512-519. doi: 10.1201/9780367810085-68.
  • Sahin, K., Ergin, S. (2021). Numerical investigation on the effects of different heating systems and coil tube arrangements on the free convection heat transfer in a confined space filled with high viscosity fluid. Thermal Science and Engineering Progress, 26(September), 101099. doi: 10.1016/j.tsep.2021.101099.
  • Sahin, K. (2022). Gemi kargo tanklarında doğal taşınımla olan isı geçişinin sayısal ve deneysel olarak incelenmesi. PhD Thesis, Istanbul Technical University.
  • Sahin, K. (2025). Numerical modeling of natural convection heat transfer from a horizontally positioned tube layer immersed in a tank. International Journal of Thermal Sciences, 214: 109853. doi: 10.1016/j.ijthermalsci.2025.109853.
  • Sahin, K., Ergin, S. (2025). Experimental investigation of natural convection heat transfer in a ship cargo tank filled with high-viscosity fluid. Thermal Science and Engineering Progress, 61: 103596. doi: 10.1016/j.tsep.2025.103596.
  • Sapra, R. (2016). Cargo oil heating practices. Standard Safety, Tankers, 16–18 May. https://www.standard-club.com/media/2179911/cargo-oil-heating-practices.pdf
  • Saunders R.J. (1968). Heat Losses from Oil-tanker Cargoes. Transactions of Institute of Marine Engineering 90: 405–414.
  • Spirax Sarco, Steam Engineering Principles and Heat Transfer, Heating with Coils and Jacket, (2025). Accessed date: 01/02/2025, https://www.spiraxsarco.com/learn-about-steam/steam-engineering-principles-and-heat-transfer/heating-with-coils-and-jackets#article-top is retrieved.
  • Suhara, J., Kato, H., Kurihara, T. (1976). Reports of Research Institute for Applied Mechanics, Experimental Studies on the Rolling Effect on Heat Losses From Oil Tanker Cargoes. Kyushu Univ, 24(76): 1–30.
  • Kurihara, T., Amagata, H., (1970). Experimental Studies on Heat Transfer Coeffieients and Effective Length of Tank Heating Coils in Vessels. The Society of Naval Architects of Japan, 40: 129–144.
  • Van der Heeden, D.J., Mulder, L.L. (1965). Heat-transfer in cargotanks of a 50,000 DWT tanker1. International Shipbuilding Progress, 12(132): 309–328. doi: 10.3233/isp-1965-1213201.
  • Yong, Y., Xinxiang, X., Qing, Y. (2017). “Chemical carrier heating coil arrangement method”. Patent No. CN104608900B.
  • Zhao, J., Wei, L., Dong, H., Liu, F. (2016). Research on heat transfer characteristic for hot oil spraying heating process in crude oil tank. Case Studies in Thermal Engineering, 7(199): 109–119. doi: 10.1016/j.csite.2016.04.001.

Gemi Kargo Tankındaki Isıtma Kangallarından Olan Kaldırma Kuvveti Kaynaklı 3B Akış ve Isı Geçişinin Sayısal Olarak İncelenmesi

Year 2025, Volume: 11 Issue: 3, 198 - 215, 01.09.2025
https://doi.org/10.52998/trjmms.1698686

Abstract

Gemi kargo tankları, kargo boşaltma sıcaklığını uygun bir seviyeye yükseltme ve koruma araçlarıyla donatılmıştır. Bu çalışmada, bir kimyasal tankere ait oluksuz olarak oluşturulan kargo tankındaki ısıtma kangallarından olan zamana bağlı doğal taşınımla ısı transferi farklı Rayleigh sayıları (4.14x106≤ RaD ≤1.5x108) ve sınır koşulları için sayısal olarak incelenmiştir. Isıtma kangalları tank tabanına eşit olarak dağıtılmıştır. Isıtma kangalları izotermal olarak ısıtılmış, tankın borda, güverte ve çift dip kısımlarında farklı sınır şartları kullanılmıştır. Çalışma akışkanı olarak ağır yakıt kullanılmıştır. Üç boyutlu zamana bağlı süreklilik, momentum ve enerji denklemleri sonlu hacim metodu kullanılarak çözülmüştür. Sonlu hacim yöntemi kullanılarak gerçekleştirilen sayısal simülasyonlar, ağır yakıtın 2 saatlik ısıtılması durumunda ısıtma kangalındaki zaman ortalama ısı transfer katsayısının RaD=4.14x106 için 34.62 W/m2K, RaD=2.47x107 için 88.90 W/m2K ve RaD=1.5x108 için 103.79 W/m2K’ye eşit olduğunu göstermektedir. Tank duvarlarından olan ısı kaybının ısıtma kangallarından elde edilen zaman ortalama ısı transferi katsayısı değerine önemli bir etkisinin olmadığı görülmüştür. İlgili araştırma sonuçları, kargo tanklarındaki ortalama ısıtma yükünün hesabının yapılmasında teorik ve teknik destek sağlayacaktır.

Ethical Statement

Bu çalışma için etik kurul iznine gerek yoktur.

Supporting Institution

İzmir Katip Çelebi Üniversitesi

Project Number

2023-GAP-GIDF-0010

References

  • Akagi, S., Kato, H. (1987). Numerical analysis of mixed convection heat transfer of a high viscosity fluid in a rectangular tank with rolling motion. International Journal of Heat and Mass Transfer, 30(11): 2423–2432. doi: 10.1016/0017-9310(87)90232-8.
  • Akagi, S., Uchida, K. (1987). Fluid motion and heat transfer of a high-viscosity fluid in a rectangular tank on a ship with oscillating motion. Journal of Heat Transfer, 109(3): 635–641. doi: 10.1115/1.3248135.
  • Altaç, Z., Uǧurlubilek, N. (2016). Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. International Journal of Thermal Sciences, 107: 237–246. doi: 10.1016/j.ijthermalsci.2016.04.016.
  • Arpaci, V.S., Shu-Hsin, K., Selamet, A. (2000). Introduction to heat transfer, First Edition, 632 p., Pearson, ISBN: 9780133910612.
  • Çengel, A.Y., Ghajar, J.A. (2015). Heat and Mass Transfer: Fundamentals and Applications, Fifth edition, 992 p., Mc Graw Hill, ISBN: 0073398187.
  • Churchill, S.W., Chu, H.H.S. (1975). Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, 18(11): 1323–1329. doi: 10.1016/0017-9310(75)90243-4.
  • Córdoba, P.A., Silin, N., Dari, E.A. (2015). Natural convection in a cubical cavity filled with a fluid showing temperature-dependent viscosity. International Journal of Thermal Sciences, 98: 255–265. doi: 10.1016/j.ijthermalsci.2015.07.007.
  • Cotter, M.A., Charles, M.E. (1992). Cylindrical Storage Tanks : Transient Cooling of Petroleum by Natural Convection in Cylindrical Storage Tanks: A Simplified Heat Loss Model. The Canadian Journal of Chemical Engineering 70: 1090–1093.
  • De Césaro Oliveski, R., MacAgnan, M.H., Copetti, J.B., De La Martinière Petroll, A. (2005). Natural convection in a tank of oil: Experimental validation of a numerical code with prescribed boundary condition. Experimental Thermal and Fluid Science, 29(6): 671–680. doi: 10.1016/j.expthermflusci.2004.10.003.
  • Gao, J., Wu, W., Zhang, J., Tu, J., Wang, X., Yang, S. (2019). Numerical simulation analysis of oil heating process of oil tanker in Arctic route. Proceedings - 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2019, pp. 420–423. doi: 10.1109/WCMEIM48965.2019.00089.
  • Hmouda, I., Rodriguez, I., Bouden, C., Oliva, A. (2010). Unsteady natural convection cooling of a water storage tank with an internal gas flue. International Journal of Thermal Sciences, 49(1): 36–47. doi: 10.1016/j.ijthermalsci.2009.05.011.
  • Li, D., Yu, Y., Wu, Y., Zhao, X., Meng, L., Wang, Q., Arıcı, M. (2023). Thermo-economics evalation of crude oil heating arranged with finned coil in floating roof tank. Journal of Cleaner Production, 415: 137802. doi: 10.1016/j.jclepro.2023.137802.
  • Magazinovic, G. (2018a). Cargo Tank Heating Using Vertically Arranged Heating Coils, Proceedings of the 23rd Symposium on Theory and Practice of Shipbuilding, 27-29 September 2018, pp. 349–356.
  • Magazinović, G. 2018b. “Multi level heating coil bundle”. Patent No. WO 2018/234380 A1.
  • Magazinović, G. (2019). Vertical arrangement of coils for efficient cargo tank heating. International Journal of Naval Architecture and Ocean Engineering, 11(2): 662-670. doi: 10.1016/j.ijnaoe.2019.02.004.
  • Magazinović, G. (2020). Circulation-Enhanced Tank Heating Using Shallow Profile Coil Bundles. Journal of Marine Science and Application, 19(2): 234–245. doi: 10.1007/s11804-020-00149-z.
  • Magazinović, G. (2021). Multi-level Coil Bundle for Efficient Cargo Tank Heating. Journal of Marine Science and Application, 20(3): 467–476. doi: 10.1007/s11804-021-00215-0.
  • Maritime Safety Committee (MSC), (2014). Amendments To The International Code For The Construction And Equipment Of Ships Carrying Liquefied Gases In Bulk (Igc Code), Vol. 1, Issue 22 Jan.
  • Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8): 1598–1605. doi: 10.2514/3.12149.
  • Mohn, F. 1971. "System for lasting, lossing,sirkulasjon og oppvarming av en flytende last i en skipstank". Patent No. 1211316.
  • Ponton, G.E. (1982). Reducing Fuel Consumption for Liquid Cargo Heating Systems. Marine Technology, 19(N 4): 377–386. doi: 10.5957/mt1.1982.19.4.377.
  • Rodríguez, I., Castro, J., Pérez-Segarra, C.D., Oliva, A. (2009). Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. International Journal of Thermal Sciences, 48(4): 708–721. doi: 10.1016/j.ijthermalsci.2008.06.002.
  • Sahin, K., (2015). Analysis of heat transfer in crude oil tanker’s cargo tanks and cargo heating system. MSc Thesis, Istanbul Technical University.
  • Sahin, K., Ergin S. (2019). Numerical Study on Natural Convection in a Ship Cargo Tank. Sustainable Development and Innovations in Marine Technologies - Proceedings of the 18th International Congress of the International Maritime Association of the Mediterranean (IMAM), pp. 512-519. doi: 10.1201/9780367810085-68.
  • Sahin, K., Ergin, S. (2021). Numerical investigation on the effects of different heating systems and coil tube arrangements on the free convection heat transfer in a confined space filled with high viscosity fluid. Thermal Science and Engineering Progress, 26(September), 101099. doi: 10.1016/j.tsep.2021.101099.
  • Sahin, K. (2022). Gemi kargo tanklarında doğal taşınımla olan isı geçişinin sayısal ve deneysel olarak incelenmesi. PhD Thesis, Istanbul Technical University.
  • Sahin, K. (2025). Numerical modeling of natural convection heat transfer from a horizontally positioned tube layer immersed in a tank. International Journal of Thermal Sciences, 214: 109853. doi: 10.1016/j.ijthermalsci.2025.109853.
  • Sahin, K., Ergin, S. (2025). Experimental investigation of natural convection heat transfer in a ship cargo tank filled with high-viscosity fluid. Thermal Science and Engineering Progress, 61: 103596. doi: 10.1016/j.tsep.2025.103596.
  • Sapra, R. (2016). Cargo oil heating practices. Standard Safety, Tankers, 16–18 May. https://www.standard-club.com/media/2179911/cargo-oil-heating-practices.pdf
  • Saunders R.J. (1968). Heat Losses from Oil-tanker Cargoes. Transactions of Institute of Marine Engineering 90: 405–414.
  • Spirax Sarco, Steam Engineering Principles and Heat Transfer, Heating with Coils and Jacket, (2025). Accessed date: 01/02/2025, https://www.spiraxsarco.com/learn-about-steam/steam-engineering-principles-and-heat-transfer/heating-with-coils-and-jackets#article-top is retrieved.
  • Suhara, J., Kato, H., Kurihara, T. (1976). Reports of Research Institute for Applied Mechanics, Experimental Studies on the Rolling Effect on Heat Losses From Oil Tanker Cargoes. Kyushu Univ, 24(76): 1–30.
  • Kurihara, T., Amagata, H., (1970). Experimental Studies on Heat Transfer Coeffieients and Effective Length of Tank Heating Coils in Vessels. The Society of Naval Architects of Japan, 40: 129–144.
  • Van der Heeden, D.J., Mulder, L.L. (1965). Heat-transfer in cargotanks of a 50,000 DWT tanker1. International Shipbuilding Progress, 12(132): 309–328. doi: 10.3233/isp-1965-1213201.
  • Yong, Y., Xinxiang, X., Qing, Y. (2017). “Chemical carrier heating coil arrangement method”. Patent No. CN104608900B.
  • Zhao, J., Wei, L., Dong, H., Liu, F. (2016). Research on heat transfer characteristic for hot oil spraying heating process in crude oil tank. Case Studies in Thermal Engineering, 7(199): 109–119. doi: 10.1016/j.csite.2016.04.001.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Ship Energy Efficiency
Journal Section Research Article
Authors

Koray Şahin 0000-0003-4433-2210

Project Number 2023-GAP-GIDF-0010
Early Pub Date July 9, 2025
Publication Date September 1, 2025
Submission Date May 14, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Şahin, K. (2025). Gemi Kargo Tankındaki Isıtma Kangallarından Olan Kaldırma Kuvveti Kaynaklı 3B Akış ve Isı Geçişinin Sayısal Olarak İncelenmesi. Turkish Journal of Maritime and Marine Sciences, 11(3), 198-215. https://doi.org/10.52998/trjmms.1698686

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).