Research Article
BibTex RIS Cite

Year 2025, Issue: Online First

Abstract

Makromantar türleri, ekosistemlerdeki kritik rolleri ve geniş endüstriyel uygulamaları nedeniyle dikkat çekmektedir. Geleneksel tür teşhis yöntemleri uzmanlık gerektiren ve zaman alıcı süreçlerdir; bu nedenle yapay zekâ (YZ), özellikle derin öğrenme (DÖ) teknikleri, bu süreçleri hızlandırmak ve doğruluğu artırmak amacıyla kullanılmaktadır. Bu makale, beş farklı makromantar türünü YZ, özelde DÖ teknikleri kullanarak otomatik olarak sınıflandırmayı amaçlamaktadır. Çalışma kapsamında Amanita muscaria, A. phalloides, Lepista nuda, Macrolepiota procera ve Craterellus cornucopioides türleri ele alınmış; bu türlerin sınıflandırılmasında DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16 ve ResNet101 gibi çeşitli derin öğrenme modelleri kullanılmıştır. Veri kümesi, 5 sınıfta toplam 683 görüntüden oluşmaktadır. Veriler dengeli bir şekilde toplanmış ve modellerin etkinliği doğruluk, kesinlik (precision), duyarlılık (recall) ve F1-skoru gibi metrikler üzerinden değerlendirilmiştir. Ayrıca modellerin hangi bölgelere odaklandığını analiz etmek amacıyla Grad-CAM görselleştirmeleri kullanılmıştır. En iyi performansı gösteren model %93 doğruluk (%7 hata) elde etmiş, %70 doğruluk (%30 hata) sağlayan basit bir Evrimsel Katmanlı Sinir Ağı temel modelini belirgin biçimde geride bırakmıştır; genel olarak, tüm transfer öğrenimi modelleri %90 ve üzeri doğruluklara ulaşmıştır. Özellikle DenseNet121 ve Xception modelleri, makromantar türlerine ait ilgili bölgeleri doğru şekilde tespit ederek en yüksek başarıyı sağlamıştır. Bu çalışma, biyolojik tür teşhisinde YZ, özellikle DÖ tekniklerinin etkin bir şekilde kullanılabileceğini ortaya koymakta ve veri setlerinin genişletilmesinin bu tekniklerin başarısını daha da artırabileceğini göstermektedir. Bu çalışmanın yeniliği, transfer öğrenmeyi Grad-CAM açıklanabilirliği ile birleştirerek makrofungusların tanımlanmasına yönelik yorumlanabilir ve biyolojik açıdan anlamlı bir çerçeve sunmasıdır.

References

  • Bartlett, P., Eberhardt, U., Schütz, N., & Beker, H. J. (2022). Species determination using AI machine-learning algorithms: Hebeloma as a case study. IMA Fungus, 13(1), 13. https://doi.org/10.1186/s43008-022-00099-x
  • Chathurika, K., Siriwardena, E., Bandara, H., Perera, G., & Dilshanka, K. (2023). Developing an identification system for different types of edible mushrooms in Sri Lanka using machine learning and image processing. International Journal of Engineering and Management Research, 13(5), 54–59. https://doi.org/10.31033/ ijemr.13.5.9
  • Cheong, P. C. H., Tan, C. S., & Fung, S. Y. (2018). Medicinal mushrooms: Cultivation and pharmaceutical impact. In Biology of macrofungi (pp. 287–304). Springer. https://doi.org/10.1007/978-3-030-02622-6_14
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1800–1807). Honolulu, HI, USA. https://doi. org/10.1109/CVPR.2017.195
  • Chugh, R. M., Mittal, P., Mp, N., Arora, T., Bhattacharya, T., Chopra, H., Cavalu, S., & Gautam, R. K. (2022). Fungal mushrooms: A natural compound with therapeutic applications. Frontiers in Pharmacology, 13, 925387. https://doi. org/10.3389/fphar.2022.925387
  • Das, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K., McClements, D. J., Gullón, B., & Lorenzo, J. M. (2021). Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules, 26(9), 2463. https://doi.org/10.3390/molecules26092463
  • de Mattos-Shipley, K. M., Ford, K. L., Alberti, F., Banks, A., Bailey, A. M., & Foster, G. (2016). The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 85(1), 125–157. https://doi.org/10.1016/j. simyco.2016.11.002
  • De, J., Nandi, S., & Acharya, K. (2022). A review on Blewit mushroom (Lepista sp.) transition from farm to pharm. Journal of Food Processing and Preservation, 46(11), e17028. https://doi.org/10.1111/jfpp.17028
  • Ekinci, F., Ugurlu, G., Ozcan, G. S., Acici, K., Asuroglu, T., Kumru, E., Guzel, M. S., & Akata, I. (2025). Classification of Mycena and Marasmius species using deep learning models: An ecological and taxonomic approach. Sensors, 25(6), 1642. https://doi.org/10.3390/s25061642
  • El-Ramady, H., Abdalla, N., Badgar, K., Llanaj, X., Törős, G., Hajdú, P., Eid, Y., & Prokisch, J. (2022). Edible mushrooms for sustainable and healthy human food: Nutritional and medicinal attributes. Sustainability, 14(9), 4941. https://doi. org/10.3390/su14094941
  • GBIF Secretariat. (2023). GBIF backbone taxonomy [Checklist dataset]. GBIF. org. https://doi.org/10.15468/39omei (Accessed July 21, 2024)
  • Google Colab. (n.d.). Retrieved August 14, 2024, from https://research.google. com/colaboratory/faq.html
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). Las Vegas, NV, USA. https://doi.org/10.1109/ CVPR.2016.90
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2261–2269). Honolulu, HI, USA. https://doi.org/10.1109/CVPR.2017.243
  • Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V., Brahamanage, R. S., & Brooks, S. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97, 1–136. https://doi.org/10.1007/s13225-019-00430-9
  • Jančo, I., Šnirc, M., Hauptvogl, M., Demková, L., Franková, H., Kunca, V., Lošák, T., & Árvay, J. (2021). Mercury in Macrolepiota procera (Scop.) Singer and its underlying substrate—Environmental and health risks assessment. Journal of Fungi, 7(9), 772. https://doi.org/10.3390/jof7090772
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv Preprint, arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  • Korkmaz, A. F., Ekinci, F., Altaş, Ş., Kumru, E., Güzel, M. S., & Akata, I. (2025). A deep learning and explainable AI-based approach for the classification of Discomycetes species. Biology, 14(6), 719. https://doi.org/10.3390/ biology14060719
  • Kumru, E., Ugurlu, G., Sevindik, M., Ekinci, F., Güzel, M. S., Acici, K., & Akata, I. (2025). Hybrid deep learning framework for high-accuracy classification of morphologically similar puffball species using CNN and transformer architectures. Biology, 14(7), 816. https://doi.org/10.3390/biology14070816
  • Li, H., Tian, Y., Menolli Jr, N., Ye, L., Karunarathna, S. C., Perez-Moreno, J., Rahman, M. M., Rashid, M. H., Phengsintham, P., & Rizal, L. (2021). Reviewing the world’s edible macrofungi species: A new evidence-based classification system. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1982– 2014. https://doi.org/10.1111/1541-4337.12708
  • Llanaj, X., Törős, G., Hajdú, P., Abdalla, N., El-Ramady, H., Kiss, A., Solberg, S. Ø., & Prokisch, J. (2023). Biotechnological applications of mushroom under the water-energy-food nexus: Crucial aspects and prospects from farm to pharmacy. Foods, 12(14), 2671. https://doi.org/10.3390/foods12142671
  • Niego, A. G. T., Lambert, C., Mortimer, P., Thongklang, N., Rapior, S., Grosse, M., Schrey, H., Charria-Girón, E., Walker, A., & Hyde, K. D. (2023). The contribution of fungi to the global economy. Fungal Diversity, 121(1), 95–137. https://doi.org/10.1007/s13225-023-00520-9
  • Niego, A. G. T., Rapior, S., Thongklang, N., Raspé, O., Hyde, K. D., & Mortimer, P. (2023). Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biology Reviews, 44, 100294. https://doi. org/10.1016/j.fbr.2022.11.002
  • Niego, A. G., Rapior, S., Thongklang, N., Raspé, O., Jaidee, W., Lumyong, S., & Hyde, K. D. (2021). Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. Journal of Fungi, 7(5), 397. https://doi. org/10.3390/jof7050397
  • Ozsari, S., Kumru, E., Ekinci, F., Akata, I., Guzel, M. S., Acici, K., Ozcan, E., & Asuroglu, T. (2024). Deep learning-based classification of macrofungi: Comparative analysis of advanced models for accurate fungi identification. Sensors, 24(22), 7189. https://doi.org/10.3390/s24227189
  • Picek, L., Šulc, M., Matas, J., Heilmann-Clausen, J., Jeppesen, T. S., & Lind, E. (2022). Automatic fungi recognition: Deep learning meets mycology. Sensors, 22(2), 633. https://doi.org/10.3390/s22020633
  • Pilz, D., Norvell, L., Danell, E., & Molina, R. (2003). Ecology and management of commercially harvested mushrooms. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, General Technical Report. https://doi.org/10.2737/PNW-GTR-576
  • Pinto, S., Barros, L., Sousa, M. J., & Ferreira, I. C. (2013). Chemical characterization and antioxidant properties of Lepista nuda fruiting bodies and mycelia obtained by in vitro culture: Effects of collection habitat and culture media. Food Research International, 51(2), 496–502. https://doi.org/10.1016/j. foodres.2012.12.009
  • Priyamvada, H., Akila, M., Singh, R. K., Ravikrishna, R., Verma, R., Philip, L., Marathe, R., Sahu, L., Sudheer, K., & Gunthe, S. (2017). Terrestrial macrofungal diversity from the tropical dry evergreen biome of southern India and its potential role in aerobiology. PLoS One, 12(1), e0169333. https://doi.org/10.1371/journal. pone.0169333
  • Raghavan, K. B. S., & Veezhinathan, K. (2024). Attention guided grad-CAM: An improved explainable artificial intelligence model for infrared breast cancer detection. Multimedia Tools and Applications, 83, 57551–57578. https://doi. org/10.1007/s11042-023-17776-7
  • Roncero-Ramos, I., & Delgado-Andrade, C. (2017). The beneficial role of edible mushrooms in human health. Current Opinion in Food Science, 14, 122–128. https://doi.org/10.1016/j.cofs.2017.04.002
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). Salt Lake City, UT, USA. https://doi.org/10.1109/CVPR.2018.00474
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618–626). Venice, Italy. https://doi.org/10.1109/ICCV.2017.74
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint, arXiv:1409.1556. https://doi. org/10.48550/arXiv.1409.1556
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818–2826). Las Vegas, NV, USA. https://doi.org/10.1109/CVPR.2016.308
  • Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., & Belongie, S. (2018). The iNaturalist species classification and detection dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1707.06642
  • Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD birds-200-2011 dataset. California Institute of Technology. https://doi.org/10.22002/D1.20092
  • Yan, Z., Liu, H., Li, J., & Wang, Y. (2023). Application of identification and evaluation techniques for edible mushrooms: A review. Critical Reviews in Analytical Chemistry, 53(3), 634–654. https://doi.org/10.1080/10408347.2021. 1969886
  • Ye, F., Yu, X.-D., Wang, Q., & Zhao, P. (2016). Identification of SNPs in a nonmodel macrofungus (Lepista nuda, Basidiomycota) through RAD sequencing. SpringerPlus, 5, 1–7. https://doi.org/10.1186/s40064-016-3459-8
  • Ye, L., Li, H., Mortimer, P. E., Xu, J., Gui, H., Karunarathna, S. C., Kumar, A., Hyde, K. D., & Shi, L. (2019). Substrate preference determines macrofungal biogeography in the Greater Mekong sub-region. Forests, 10(10), 824. https:// doi.org/10.3390/f10100824
  • Yilmaz, I., Ermis, F., Akata, I., & Kaya, E. (2015). A case study: What doses of Amanita phalloides and amatoxins are lethal to humans? Wilderness & Environmental Medicine, 26(4), 491–496. https://doi.org/10.1016/j. wem.2015.08.003

Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring

Year 2025, Issue: Online First

Abstract

Macrofungal species attract significant attention due to their critical roles in ecosystems and widespread industrial applications. Traditional species identification methods are expertise-intensive and time-consuming processes. Artificial intelligence (AI) techniques, especially, deep learning (DL), have been employed to accelerate these processes and improve result accuracy. This article aimed to classify five macrofungi using AI, specifically DL. The study focuses on classifying Amanita muscaria, A. phalloides, Lepista nuda, Macrolepiota procera, and Craterellus cornucopioides, utilizing various DL models, including DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16, and ResNet101. The dataset comprised 683 images across five classes. The data were collected in a balanced manner, and the model’s effectiveness was evaluated based on accuracy, precision, recall, and F1-score metrics. Additionally, Grad-CAM visualizations were utilized to analyze the regions of focus. The best-performing model achieved 93% accuracy (7% error), outperforming a simple Convolutional Neural Network baseline with 70% accuracy (30% error). Overall, all transfer-learning models achieved accuracies of ≥ 90%. In particular, the DenseNet121 and Xception models achieved the maximum success by correctly identifying relevant regions of these species. The study demonstrates that AI, particularly DL-based techniques, can be effectively applied in species identification. Expanding datasets could further enhance their performance. The novelty of this study is the use of a combination of transfer-learning and Grad-CAM explainability to provide an interpretable and biologically meaningful framework for macrofungi identification.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

References

  • Bartlett, P., Eberhardt, U., Schütz, N., & Beker, H. J. (2022). Species determination using AI machine-learning algorithms: Hebeloma as a case study. IMA Fungus, 13(1), 13. https://doi.org/10.1186/s43008-022-00099-x
  • Chathurika, K., Siriwardena, E., Bandara, H., Perera, G., & Dilshanka, K. (2023). Developing an identification system for different types of edible mushrooms in Sri Lanka using machine learning and image processing. International Journal of Engineering and Management Research, 13(5), 54–59. https://doi.org/10.31033/ ijemr.13.5.9
  • Cheong, P. C. H., Tan, C. S., & Fung, S. Y. (2018). Medicinal mushrooms: Cultivation and pharmaceutical impact. In Biology of macrofungi (pp. 287–304). Springer. https://doi.org/10.1007/978-3-030-02622-6_14
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1800–1807). Honolulu, HI, USA. https://doi. org/10.1109/CVPR.2017.195
  • Chugh, R. M., Mittal, P., Mp, N., Arora, T., Bhattacharya, T., Chopra, H., Cavalu, S., & Gautam, R. K. (2022). Fungal mushrooms: A natural compound with therapeutic applications. Frontiers in Pharmacology, 13, 925387. https://doi. org/10.3389/fphar.2022.925387
  • Das, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K., McClements, D. J., Gullón, B., & Lorenzo, J. M. (2021). Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules, 26(9), 2463. https://doi.org/10.3390/molecules26092463
  • de Mattos-Shipley, K. M., Ford, K. L., Alberti, F., Banks, A., Bailey, A. M., & Foster, G. (2016). The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 85(1), 125–157. https://doi.org/10.1016/j. simyco.2016.11.002
  • De, J., Nandi, S., & Acharya, K. (2022). A review on Blewit mushroom (Lepista sp.) transition from farm to pharm. Journal of Food Processing and Preservation, 46(11), e17028. https://doi.org/10.1111/jfpp.17028
  • Ekinci, F., Ugurlu, G., Ozcan, G. S., Acici, K., Asuroglu, T., Kumru, E., Guzel, M. S., & Akata, I. (2025). Classification of Mycena and Marasmius species using deep learning models: An ecological and taxonomic approach. Sensors, 25(6), 1642. https://doi.org/10.3390/s25061642
  • El-Ramady, H., Abdalla, N., Badgar, K., Llanaj, X., Törős, G., Hajdú, P., Eid, Y., & Prokisch, J. (2022). Edible mushrooms for sustainable and healthy human food: Nutritional and medicinal attributes. Sustainability, 14(9), 4941. https://doi. org/10.3390/su14094941
  • GBIF Secretariat. (2023). GBIF backbone taxonomy [Checklist dataset]. GBIF. org. https://doi.org/10.15468/39omei (Accessed July 21, 2024)
  • Google Colab. (n.d.). Retrieved August 14, 2024, from https://research.google. com/colaboratory/faq.html
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778). Las Vegas, NV, USA. https://doi.org/10.1109/ CVPR.2016.90
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2261–2269). Honolulu, HI, USA. https://doi.org/10.1109/CVPR.2017.243
  • Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V., Brahamanage, R. S., & Brooks, S. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97, 1–136. https://doi.org/10.1007/s13225-019-00430-9
  • Jančo, I., Šnirc, M., Hauptvogl, M., Demková, L., Franková, H., Kunca, V., Lošák, T., & Árvay, J. (2021). Mercury in Macrolepiota procera (Scop.) Singer and its underlying substrate—Environmental and health risks assessment. Journal of Fungi, 7(9), 772. https://doi.org/10.3390/jof7090772
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv Preprint, arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  • Korkmaz, A. F., Ekinci, F., Altaş, Ş., Kumru, E., Güzel, M. S., & Akata, I. (2025). A deep learning and explainable AI-based approach for the classification of Discomycetes species. Biology, 14(6), 719. https://doi.org/10.3390/ biology14060719
  • Kumru, E., Ugurlu, G., Sevindik, M., Ekinci, F., Güzel, M. S., Acici, K., & Akata, I. (2025). Hybrid deep learning framework for high-accuracy classification of morphologically similar puffball species using CNN and transformer architectures. Biology, 14(7), 816. https://doi.org/10.3390/biology14070816
  • Li, H., Tian, Y., Menolli Jr, N., Ye, L., Karunarathna, S. C., Perez-Moreno, J., Rahman, M. M., Rashid, M. H., Phengsintham, P., & Rizal, L. (2021). Reviewing the world’s edible macrofungi species: A new evidence-based classification system. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1982– 2014. https://doi.org/10.1111/1541-4337.12708
  • Llanaj, X., Törős, G., Hajdú, P., Abdalla, N., El-Ramady, H., Kiss, A., Solberg, S. Ø., & Prokisch, J. (2023). Biotechnological applications of mushroom under the water-energy-food nexus: Crucial aspects and prospects from farm to pharmacy. Foods, 12(14), 2671. https://doi.org/10.3390/foods12142671
  • Niego, A. G. T., Lambert, C., Mortimer, P., Thongklang, N., Rapior, S., Grosse, M., Schrey, H., Charria-Girón, E., Walker, A., & Hyde, K. D. (2023). The contribution of fungi to the global economy. Fungal Diversity, 121(1), 95–137. https://doi.org/10.1007/s13225-023-00520-9
  • Niego, A. G. T., Rapior, S., Thongklang, N., Raspé, O., Hyde, K. D., & Mortimer, P. (2023). Reviewing the contributions of macrofungi to forest ecosystem processes and services. Fungal Biology Reviews, 44, 100294. https://doi. org/10.1016/j.fbr.2022.11.002
  • Niego, A. G., Rapior, S., Thongklang, N., Raspé, O., Jaidee, W., Lumyong, S., & Hyde, K. D. (2021). Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. Journal of Fungi, 7(5), 397. https://doi. org/10.3390/jof7050397
  • Ozsari, S., Kumru, E., Ekinci, F., Akata, I., Guzel, M. S., Acici, K., Ozcan, E., & Asuroglu, T. (2024). Deep learning-based classification of macrofungi: Comparative analysis of advanced models for accurate fungi identification. Sensors, 24(22), 7189. https://doi.org/10.3390/s24227189
  • Picek, L., Šulc, M., Matas, J., Heilmann-Clausen, J., Jeppesen, T. S., & Lind, E. (2022). Automatic fungi recognition: Deep learning meets mycology. Sensors, 22(2), 633. https://doi.org/10.3390/s22020633
  • Pilz, D., Norvell, L., Danell, E., & Molina, R. (2003). Ecology and management of commercially harvested mushrooms. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, General Technical Report. https://doi.org/10.2737/PNW-GTR-576
  • Pinto, S., Barros, L., Sousa, M. J., & Ferreira, I. C. (2013). Chemical characterization and antioxidant properties of Lepista nuda fruiting bodies and mycelia obtained by in vitro culture: Effects of collection habitat and culture media. Food Research International, 51(2), 496–502. https://doi.org/10.1016/j. foodres.2012.12.009
  • Priyamvada, H., Akila, M., Singh, R. K., Ravikrishna, R., Verma, R., Philip, L., Marathe, R., Sahu, L., Sudheer, K., & Gunthe, S. (2017). Terrestrial macrofungal diversity from the tropical dry evergreen biome of southern India and its potential role in aerobiology. PLoS One, 12(1), e0169333. https://doi.org/10.1371/journal. pone.0169333
  • Raghavan, K. B. S., & Veezhinathan, K. (2024). Attention guided grad-CAM: An improved explainable artificial intelligence model for infrared breast cancer detection. Multimedia Tools and Applications, 83, 57551–57578. https://doi. org/10.1007/s11042-023-17776-7
  • Roncero-Ramos, I., & Delgado-Andrade, C. (2017). The beneficial role of edible mushrooms in human health. Current Opinion in Food Science, 14, 122–128. https://doi.org/10.1016/j.cofs.2017.04.002
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510–4520). Salt Lake City, UT, USA. https://doi.org/10.1109/CVPR.2018.00474
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618–626). Venice, Italy. https://doi.org/10.1109/ICCV.2017.74
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint, arXiv:1409.1556. https://doi. org/10.48550/arXiv.1409.1556
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818–2826). Las Vegas, NV, USA. https://doi.org/10.1109/CVPR.2016.308
  • Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., & Belongie, S. (2018). The iNaturalist species classification and detection dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1707.06642
  • Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011). The Caltech-UCSD birds-200-2011 dataset. California Institute of Technology. https://doi.org/10.22002/D1.20092
  • Yan, Z., Liu, H., Li, J., & Wang, Y. (2023). Application of identification and evaluation techniques for edible mushrooms: A review. Critical Reviews in Analytical Chemistry, 53(3), 634–654. https://doi.org/10.1080/10408347.2021. 1969886
  • Ye, F., Yu, X.-D., Wang, Q., & Zhao, P. (2016). Identification of SNPs in a nonmodel macrofungus (Lepista nuda, Basidiomycota) through RAD sequencing. SpringerPlus, 5, 1–7. https://doi.org/10.1186/s40064-016-3459-8
  • Ye, L., Li, H., Mortimer, P. E., Xu, J., Gui, H., Karunarathna, S. C., Kumar, A., Hyde, K. D., & Shi, L. (2019). Substrate preference determines macrofungal biogeography in the Greater Mekong sub-region. Forests, 10(10), 824. https:// doi.org/10.3390/f10100824
  • Yilmaz, I., Ermis, F., Akata, I., & Kaya, E. (2015). A case study: What doses of Amanita phalloides and amatoxins are lethal to humans? Wilderness & Environmental Medicine, 26(4), 491–496. https://doi.org/10.1016/j. wem.2015.08.003
There are 41 citations in total.

Details

Primary Language English
Subjects Deep Learning, Machine Learning Algorithms, Plant and Fungus Systematics and Taxonomy
Journal Section Research Article/Araştırma Makalesi
Authors

Şifa Özsarı 0000-0002-0531-4645

Eda Kumru 0009-0000-7417-6197

Fatih Ekinci 0000-0002-1011-1105

Mehmet Serdar Güzel 0000-0002-3408-0083

Koray Açıcı 0000-0002-3821-6419

Tunc Asuroglu 0000-0003-4153-0764

Ilgaz Akata 0000-0002-1731-1302

Early Pub Date September 30, 2025
Publication Date October 12, 2025
Submission Date May 29, 2025
Acceptance Date September 14, 2025
Published in Issue Year 2025 Issue: Online First

Cite

APA Özsarı, Ş., Kumru, E., Ekinci, F., … Güzel, M. S. (2025). Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring. Trakya University Journal of Natural Sciences(Online First).
AMA Özsarı Ş, Kumru E, Ekinci F, et al. Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring. Trakya Univ J Nat Sci. September 2025;(Online First).
Chicago Özsarı, Şifa, Eda Kumru, Fatih Ekinci, Mehmet Serdar Güzel, Koray Açıcı, Tunc Asuroglu, and Ilgaz Akata. “Advanced Deep Learning Approaches for the Automated Classification of Macrofungal Species in Biodiversity Monitoring”. Trakya University Journal of Natural Sciences, no. Online First (September 2025).
EndNote Özsarı Ş, Kumru E, Ekinci F, Güzel MS, Açıcı K, Asuroglu T, Akata I (September 1, 2025) Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring. Trakya University Journal of Natural Sciences Online First
IEEE Ş. Özsarı, E. Kumru, F. Ekinci, M. S. Güzel, K. Açıcı, T. Asuroglu, and I. Akata, “Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring”, Trakya Univ J Nat Sci, no. Online First, September2025.
ISNAD Özsarı, Şifa et al. “Advanced Deep Learning Approaches for the Automated Classification of Macrofungal Species in Biodiversity Monitoring”. Trakya University Journal of Natural Sciences Online First (September2025).
JAMA Özsarı Ş, Kumru E, Ekinci F, Güzel MS, Açıcı K, Asuroglu T, Akata I. Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring. Trakya Univ J Nat Sci. 2025.
MLA Özsarı, Şifa et al. “Advanced Deep Learning Approaches for the Automated Classification of Macrofungal Species in Biodiversity Monitoring”. Trakya University Journal of Natural Sciences, no. Online First, 2025.
Vancouver Özsarı Ş, Kumru E, Ekinci F, Güzel MS, Açıcı K, Asuroglu T, et al. Advanced deep learning approaches for the automated classification of macrofungal species in biodiversity monitoring. Trakya Univ J Nat Sci. 2025(Online First).

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.