Research Article
BibTex RIS Cite

Year 2025, Volume: 26 Issue: 2, 174 - 181, 15.10.2025

Abstract

Çeşitli antropojenik faaliyetler sonucu ağır metallerin neden olduğu
su kirliliği, temiz su kaynaklarını tehdit eden önemli bir küresel sorun
olmaya devam etmektedir. Geleneksel su arıtma yöntemleri maliyetli
olup, potansiyel çevresel dezavantajları da bulunmaktadır. Bu nedenle,
uygun maliyetli ve biyolojik olarak parçalanabilir arıtma tekniklerinin
geliştirilmesi zorunludur. Bu çalışmada, sudan ağır metallerin
uzaklaştırılması için fil otundan (Pennisetum purpureum) elde edilen
modifiye edilmemiş ve EDTA ile modifiye edilmiş selülozun adsorpsiyon
kapasiteleri değerlendirilmiştir. Fil otu Enugu, Nijerya’dan toplanmıştır.
Örnekler yıkanmış ve gölgede kurutulmuştur. Alkali işlem ve ağartma
yoluyla selüloz ekstraksiyonu yapılan selüloz, adsorpsiyon özelliklerini
geliştirmek için EDTA ile modifiye edilmiştir. Modifiye edilmemiş ve
EDTA ile modifiye edilmiş selüloz liflerinin sulu çözeltilerden ağır
metalleri adsorbe etme kapasitelerini değerlendirmek için kontrollü
koşullar altında toplu adsorpsiyon deneyleri gerçekleştirilmiştir.
Adsorpsiyon öncesi ve sonrası metal iyon konsantrasyonları alev atom
absorpsiyon spektrofotometresi kullanılarak ölçülmüş ve adsorpsiyon
kapasiteleri buna göre hesaplanmıştır. Modifiye edilmemiş ve edilmiş
selüloz en yüksek afiniteyi sırasıyla Hg(II) ve Cd(II) için göstermiştir.
Her iki selüloz tipi çözeltilerden yaklaşık %70 oranında Hg ve Cd
iyonlarını etkili bir şekilde uzaklaştırmıştır. Bulgular, modifiye edilmemiş
selülozun Hg gideriminde özellikle etkili olduğunu, modifiye selülozun
ise Cd adsorpsiyonunda üstün olduğunu göstermiştir. Bu sonuçlar, her
iki tip selülozun belirli kirleticilere karşı hedefli arıtma potansiyeline
sahip olduğunu düşündürmektedir. Sonuçlar bu maddelerin ağır metal
arıtımı için uygun maliyetli ve biyolojik olarak parçalanabilir çözümler
olarak ele alınabileceklerine işaret etmektedir.

References

  • Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A.-G. (2023). Toxicity of heavy metals and recent advances in their removal: A review. Toxics, 11(7), 580. https://doi.org/10.3390/ toxics11070580
  • Abdelhamid, H. N., & Mathew, A. P. (2021). Cellulose-based materials for water remediation: Adsorption, catalysis, and antifouling. Frontiers in Chemical Engineering, 3, 790314. https://doi.org/10.3389/fceng.2021.790314
  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
  • Ali, M. M., Ali, M. L., Proshad, R., Islam, S., Rahman, Z., Tusher, T. R., Kormoker, T., & Al, M. A. (2020). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh. Human and Ecological Risk Assessment, 26(10), 2646–2662. https://doi.org/10.1 080/10807039.2019.1676635
  • Asefon, T. (2025). Mitigating water pollution through synergistic chemical and ecological approaches. SSRN Electronic Journal. https://ssrn.com/abstract=5175491
  • Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/D3RA00723E
  • Bilal, M., Ihsanullah, I., Younas, M., & Shah, M. U. H. (2021). Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology, 278, 119510. https://doi.org/10.1016/j.seppur.2021.119510
  • Biswal, B. K., & Balasubramanian, R. (2023). Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. Journal of Environmental Chemical Engineering, 11(5), 110986. https://doi. org/10.1016/j.jece.2023.110986
  • Chen, Q., Zheng, J., Wen, L., Yang, C., & Zhang, L. (2019). A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere, 224, 509–518. https://doi.org/10.1016/j.chemosphere.2019.02.138
  • Chowdhury, M. S., Oliullah, M. S., Islam, R. T., Hurayra, M. A., Al Mahmud, M. Z., & Nazm. (2025). Biomaterials for energy storage: Synthesis, properties, and performance. Green Technology and Sustainability, 3, 100152. https://doi. org/10.1016/j.grets.2024.100152
  • Darmenbayeva, A., Rajasekharan, R., Massalimova, B., Bektenov, N., Taubayeva, R., Bazarbaeva, K., & Ungarbayeva, A. (2024). Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects. Molecules, 29(24), 5969. https://doi.org/10.3390/ molecules29245969
  • de Morais Teixeira, E., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33(1), 63–66. https://doi.org/10.1016/j.indcrop.2010.08.009
  • Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Analytical Letters, 53(17), 2812–2839. https:// doi.org/10.1080/00032719.2020.1759616
  • Elbasiouny, H., Darwesh, M., Elbeltagy, H., Abo-Alhamd, F. G., Amer, A. A., Elsegaiy, M. A., El-Sheikh, M. A., & Brevik, E. C. (2021). Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environmental Monitoring and Assessment, 193(7), 449. https://doi.org/10.1007/ s10661-021-09236-2
  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https:// doi.org/10.1016/j.biortech.2013.12.102
  • Fujita, S., Sasa, R., Kinoshita, N., Kishimoto, R., & Kono, H. (2025). Nano-fibrillated bacterial cellulose nanofiber surface modification with EDTA for the effective removal of heavy metal ions in aqueous solutions. Materials, 18(2), 374. https://doi.org/10.3390/ma18020374
  • Grönwall, J., & Danert, K. (2020). Regarding groundwater and drinking water access through a human rights lens: Self-supply as a norm. Water, 12(2), 419. https://doi.org/10.3390/w12020419
  • Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Thakur, P., & Mishra, P. K. (2021). A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials, 14(16), 4702. https://doi.org/10.3390/ma14164702
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. https://doi.org/10.4491/eer.2015.018
  • Hama Aziz, K. H., Fatah, N. M., & Muhammad, K. T. (2024). Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. Royal Society Open Science, 11(5), 232033. https://doi.org/10.1098/rsos.232033
  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/10.1016/j. jenvman.2011.06.009
  • Ighalo, J. O., & Adeniyi, A. G. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi. org/10.1016/j.chemosphere.2020.127569
  • Kaur, A., Setia, H., & Wanchoo, P. R. (2018). Cellulose fiber extracted from Napier grass in PVA composites. Indian Journal of Chemical Technology, 25(1), 88–93. http://op.niscpr.res.in/index.php/IJCT/article/viewFile/7440/465464738
  • Kaur, J., Sengupta, P., & Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research, 61(5), 1921–1954. https://doi.org/10.1021/acs.iecr.1c04583
  • Kenawy, I. M., Hafez, M. A. H., Ismail, M. A., & Hashem, M. A. (2018). Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. International Journal of Biological Macromolecules, 107, 1538–1549. https://doi.org/10.1016/j.ijbiomac.2017.10.017
  • Kumar, D., & Khan, E. A. (2021). Remediation and detection techniques for heavy metals in the environment. In Heavy metals in the environment (pp. 205– 222). Elsevier. https://doi.org/10.1016/B978-0-12-821656-9.00012-2
  • Lailaty, I. Q., Astutik, S., & Surya, M. I. (2024). The growth response of Rendeu (Staurogyne elongata (Neese) Kuntze) to shoot pruning and its propagation by shoot cutting. Journal of Tropical Biodiversity and Biotechnology, 9(1), 77078. https://doi.org/10.22146/jtbb.77078
  • Morales-Herrera, V. A., Quintero-Álvarez, F. G., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Aguayo-Villarreal, I. A., Landin-Sandoval, V. J., & Bonilla- Petriciolet, A. (2024). Assessment and modeling of mercury adsorption on carbon-based adsorbents prepared from Jacaranda mimosifolia and guava biomass via pyrolysis and hydrothermal carbonization. Water Practice & Technology, 19(4), 1162–1176. https://doi.org/10.2166/wpt.2024.051
  • Motloung, M. T., Magagula, S. I., Kaleni, A., Sikhosana, T. S., Lebelo, K., & Mochane, M. J. (2023). Recent advances on chemically functionalized cellulose-based materials for arsenic removal in wastewater: A review. Water, 15(4), 793. https://doi.org/10.3390/w15040793
  • Nikiforova, T., Kozlov, V., Razgovorov, P., Politaeva, N., Velmozhina, K., Shinkevich, P., & Chelysheva, V. (2023). Heavy metal ions (II) sorption by a cellulose-based sorbent containing sulfogroups. Polymers, 15(21), 4212. https:// doi.org/10.3390/polym15214212
  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(7), 1–23. https://doi.org/10.1007/ s13201-020-01233-z
  • Okudo, C. C., Ekere, N. R., & Okoye, C. O. (2023). Quality assessment of non-roof harvested rainwater in industrial layouts of Enugu, South East Nigeria. Applied Water Science, 13(5), 116. https://doi.org/10.1007/s13201-023-01916-3
  • Oyewo, O. A., Elemike, E. E., Onwudiwe, D. C., & Onyango, M. S. (2020). Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules, 164, 2477– 2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074
  • Rehman, M. U., Taj, M. B., & Carabineiro, S. A. (2023). Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. Chemosphere, 338, 139477. https://doi.org/10.1016/j. chemosphere.2023.139477
  • Riccardi, D., Guo, H. B., Parks, J. M., Gu, B., Summers, A. O., Miller, S. M., & Smith, J. C. (2013). Why mercury prefers soft ligands. The Journal of Physical Chemistry Letters, 4(14), 2317–2322. https://doi.org/10.1021/jz400885f
  • Saha, P., & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment, 25(4), 966–987. https://doi. org/10.1080/10807039.2018.1458595
  • Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., Baskar, G., & Pugazhendhi, A. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440. https://doi. org/10.1016/j.envres.2024.119440
  • Sasan Narkesabad, Z., Rafiee, R., & Jalilnejad, E. (2023). Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Scientific Reports, 13(1), 3670. https://doi. org/10.1038/s41598-023-30634-8
  • Shi, R. J., Wang, T., Lang, J. Q., Zhou, N., & Ma, M. G. (2022). Multifunctional cellulose and cellulose-based (nano)composite adsorbents. Frontiers in Bioengineering and Biotechnology, 10, 891034. https://doi.org/10.3389/ fbioe.2022.891034
  • Srivastava, V. (2021). Grand challenges in chemical treatment of hazardous pollutants. Frontiers in Environmental Chemistry, 2, 792814. https://doi. org/10.3389/fenvc.2021.792814
  • Trifirò, F., & Zanirato, P. (2024). Water purification: Physical, mechanical, chemical and biological treatments. Mathews Journal of Pharmaceutical Science, 8, 42. https://doi.org/10.30654/MJPS.10042
  • Wang, R., Ren, J., Ren, H., Tao, L., Wu, C., Sun, X., & Lv, M. (2023). Enhanced adsorption of Cu2+ from aqueous solution by sludge biochar compounded with attapulgite-modified Fe. Water, 15(23), 4169. https://doi.org/10.3390/w15234169
  • Yuan, J., Liu, G., Liu, P., & Huang, R. (2024). Comprehensive assessment of elephant grass (Pennisetum purpureum) stalks at different growth stages as raw materials for nanocellulose production. Tropical Plants, 3(1), Article tp-0024- 0013. https://doi.org/10.48130/tp-0024-0013

Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum)

Year 2025, Volume: 26 Issue: 2, 174 - 181, 15.10.2025

Abstract

Heavy metal pollution of water caused by various anthropogenic activities remains a significant global challenge, threatening the supply of clean water. Conventional water remediation approaches are costly with potential environmental risks. Thus, the development of cost-effective and biodegradable remediation methods is imperative. This study assessed the heavy metal adsorption capacities of native and EDTA-modified elephant grass (Pennisetum purpureum) cellulose. Elephant grass was collected from Enugu, Nigeria. The samples were washed and shade-dried. Cellulose was extracted via alkali treatment and bleaching, and then modified with EDTA to enhance its adsorptive properties. Batch adsorption experiments were designed to evaluate the capacities of unmodified and modified cellulose fibers to adsorb heavy metals from aqueous solutions under controlled conditions. The metal ion concentrations before and after adsorption were measured using flame atomic absorption spectrophotometry, and the adsorption capacities were calculated. The unmodified and modified cellulose exhibited the highest affinity for Hg(II) and Cd(II), respectively. Both types effectively removed ~70% of the Hg and Cd ions from solution. These results indicated that the unmodified cellulose was particularly effective for Hg removal, while the modified cellulose excelled in adsorbing Cd. They suggest the potential of these materials for the targeted remediation of specific contaminants and also identify them as cost-effective and biodegradable solutions for remediating heavy metal pollution.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

References

  • Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., Mouhamed, M. S., Shalamesh, E. M., Alhorieny, N. A., Abd Elaty, A. E., Elgendy, I. M., Etman, A. E., Saad, K. E., Tsigkou, K., Ali, S. S., Kornaros, M., & Mahmoud, Y. A.-G. (2023). Toxicity of heavy metals and recent advances in their removal: A review. Toxics, 11(7), 580. https://doi.org/10.3390/ toxics11070580
  • Abdelhamid, H. N., & Mathew, A. P. (2021). Cellulose-based materials for water remediation: Adsorption, catalysis, and antifouling. Frontiers in Chemical Engineering, 3, 790314. https://doi.org/10.3389/fceng.2021.790314
  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
  • Ali, M. M., Ali, M. L., Proshad, R., Islam, S., Rahman, Z., Tusher, T. R., Kormoker, T., & Al, M. A. (2020). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh. Human and Ecological Risk Assessment, 26(10), 2646–2662. https://doi.org/10.1 080/10807039.2019.1676635
  • Asefon, T. (2025). Mitigating water pollution through synergistic chemical and ecological approaches. SSRN Electronic Journal. https://ssrn.com/abstract=5175491
  • Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13(26), 17595–17610. https://doi.org/10.1039/D3RA00723E
  • Bilal, M., Ihsanullah, I., Younas, M., & Shah, M. U. H. (2021). Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology, 278, 119510. https://doi.org/10.1016/j.seppur.2021.119510
  • Biswal, B. K., & Balasubramanian, R. (2023). Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review. Journal of Environmental Chemical Engineering, 11(5), 110986. https://doi. org/10.1016/j.jece.2023.110986
  • Chen, Q., Zheng, J., Wen, L., Yang, C., & Zhang, L. (2019). A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere, 224, 509–518. https://doi.org/10.1016/j.chemosphere.2019.02.138
  • Chowdhury, M. S., Oliullah, M. S., Islam, R. T., Hurayra, M. A., Al Mahmud, M. Z., & Nazm. (2025). Biomaterials for energy storage: Synthesis, properties, and performance. Green Technology and Sustainability, 3, 100152. https://doi. org/10.1016/j.grets.2024.100152
  • Darmenbayeva, A., Rajasekharan, R., Massalimova, B., Bektenov, N., Taubayeva, R., Bazarbaeva, K., & Ungarbayeva, A. (2024). Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects. Molecules, 29(24), 5969. https://doi.org/10.3390/ molecules29245969
  • de Morais Teixeira, E., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33(1), 63–66. https://doi.org/10.1016/j.indcrop.2010.08.009
  • Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Analytical Letters, 53(17), 2812–2839. https:// doi.org/10.1080/00032719.2020.1759616
  • Elbasiouny, H., Darwesh, M., Elbeltagy, H., Abo-Alhamd, F. G., Amer, A. A., Elsegaiy, M. A., El-Sheikh, M. A., & Brevik, E. C. (2021). Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environmental Monitoring and Assessment, 193(7), 449. https://doi.org/10.1007/ s10661-021-09236-2
  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14. https:// doi.org/10.1016/j.biortech.2013.12.102
  • Fujita, S., Sasa, R., Kinoshita, N., Kishimoto, R., & Kono, H. (2025). Nano-fibrillated bacterial cellulose nanofiber surface modification with EDTA for the effective removal of heavy metal ions in aqueous solutions. Materials, 18(2), 374. https://doi.org/10.3390/ma18020374
  • Grönwall, J., & Danert, K. (2020). Regarding groundwater and drinking water access through a human rights lens: Self-supply as a norm. Water, 12(2), 419. https://doi.org/10.3390/w12020419
  • Gupta, A., Sharma, V., Sharma, K., Kumar, V., Choudhary, S., Mankotia, P., Thakur, P., & Mishra, P. K. (2021). A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials, 14(16), 4702. https://doi.org/10.3390/ma14164702
  • Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1–18. https://doi.org/10.4491/eer.2015.018
  • Hama Aziz, K. H., Fatah, N. M., & Muhammad, K. T. (2024). Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. Royal Society Open Science, 11(5), 232033. https://doi.org/10.1098/rsos.232033
  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388. https://doi.org/10.1016/j. jenvman.2011.06.009
  • Ighalo, J. O., & Adeniyi, A. G. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi. org/10.1016/j.chemosphere.2020.127569
  • Kaur, A., Setia, H., & Wanchoo, P. R. (2018). Cellulose fiber extracted from Napier grass in PVA composites. Indian Journal of Chemical Technology, 25(1), 88–93. http://op.niscpr.res.in/index.php/IJCT/article/viewFile/7440/465464738
  • Kaur, J., Sengupta, P., & Mukhopadhyay, S. (2022). Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Industrial & Engineering Chemistry Research, 61(5), 1921–1954. https://doi.org/10.1021/acs.iecr.1c04583
  • Kenawy, I. M., Hafez, M. A. H., Ismail, M. A., & Hashem, M. A. (2018). Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. International Journal of Biological Macromolecules, 107, 1538–1549. https://doi.org/10.1016/j.ijbiomac.2017.10.017
  • Kumar, D., & Khan, E. A. (2021). Remediation and detection techniques for heavy metals in the environment. In Heavy metals in the environment (pp. 205– 222). Elsevier. https://doi.org/10.1016/B978-0-12-821656-9.00012-2
  • Lailaty, I. Q., Astutik, S., & Surya, M. I. (2024). The growth response of Rendeu (Staurogyne elongata (Neese) Kuntze) to shoot pruning and its propagation by shoot cutting. Journal of Tropical Biodiversity and Biotechnology, 9(1), 77078. https://doi.org/10.22146/jtbb.77078
  • Morales-Herrera, V. A., Quintero-Álvarez, F. G., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Aguayo-Villarreal, I. A., Landin-Sandoval, V. J., & Bonilla- Petriciolet, A. (2024). Assessment and modeling of mercury adsorption on carbon-based adsorbents prepared from Jacaranda mimosifolia and guava biomass via pyrolysis and hydrothermal carbonization. Water Practice & Technology, 19(4), 1162–1176. https://doi.org/10.2166/wpt.2024.051
  • Motloung, M. T., Magagula, S. I., Kaleni, A., Sikhosana, T. S., Lebelo, K., & Mochane, M. J. (2023). Recent advances on chemically functionalized cellulose-based materials for arsenic removal in wastewater: A review. Water, 15(4), 793. https://doi.org/10.3390/w15040793
  • Nikiforova, T., Kozlov, V., Razgovorov, P., Politaeva, N., Velmozhina, K., Shinkevich, P., & Chelysheva, V. (2023). Heavy metal ions (II) sorption by a cellulose-based sorbent containing sulfogroups. Polymers, 15(21), 4212. https:// doi.org/10.3390/polym15214212
  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(7), 1–23. https://doi.org/10.1007/ s13201-020-01233-z
  • Okudo, C. C., Ekere, N. R., & Okoye, C. O. (2023). Quality assessment of non-roof harvested rainwater in industrial layouts of Enugu, South East Nigeria. Applied Water Science, 13(5), 116. https://doi.org/10.1007/s13201-023-01916-3
  • Oyewo, O. A., Elemike, E. E., Onwudiwe, D. C., & Onyango, M. S. (2020). Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules, 164, 2477– 2496. https://doi.org/10.1016/j.ijbiomac.2020.08.074
  • Rehman, M. U., Taj, M. B., & Carabineiro, S. A. (2023). Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. Chemosphere, 338, 139477. https://doi.org/10.1016/j. chemosphere.2023.139477
  • Riccardi, D., Guo, H. B., Parks, J. M., Gu, B., Summers, A. O., Miller, S. M., & Smith, J. C. (2013). Why mercury prefers soft ligands. The Journal of Physical Chemistry Letters, 4(14), 2317–2322. https://doi.org/10.1021/jz400885f
  • Saha, P., & Paul, B. (2019). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment, 25(4), 966–987. https://doi. org/10.1080/10807039.2018.1458595
  • Saravanan, P., Saravanan, V., Rajeshkannan, R., Arnica, G., Rajasimman, M., Baskar, G., & Pugazhendhi, A. (2024). Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environmental Research, 258, 119440. https://doi. org/10.1016/j.envres.2024.119440
  • Sasan Narkesabad, Z., Rafiee, R., & Jalilnejad, E. (2023). Experimental study on evaluation and optimization of heavy metals adsorption on a novel amidoximated silane functionalized Luffa cylindrica. Scientific Reports, 13(1), 3670. https://doi. org/10.1038/s41598-023-30634-8
  • Shi, R. J., Wang, T., Lang, J. Q., Zhou, N., & Ma, M. G. (2022). Multifunctional cellulose and cellulose-based (nano)composite adsorbents. Frontiers in Bioengineering and Biotechnology, 10, 891034. https://doi.org/10.3389/ fbioe.2022.891034
  • Srivastava, V. (2021). Grand challenges in chemical treatment of hazardous pollutants. Frontiers in Environmental Chemistry, 2, 792814. https://doi. org/10.3389/fenvc.2021.792814
  • Trifirò, F., & Zanirato, P. (2024). Water purification: Physical, mechanical, chemical and biological treatments. Mathews Journal of Pharmaceutical Science, 8, 42. https://doi.org/10.30654/MJPS.10042
  • Wang, R., Ren, J., Ren, H., Tao, L., Wu, C., Sun, X., & Lv, M. (2023). Enhanced adsorption of Cu2+ from aqueous solution by sludge biochar compounded with attapulgite-modified Fe. Water, 15(23), 4169. https://doi.org/10.3390/w15234169
  • Yuan, J., Liu, G., Liu, P., & Huang, R. (2024). Comprehensive assessment of elephant grass (Pennisetum purpureum) stalks at different growth stages as raw materials for nanocellulose production. Tropical Plants, 3(1), Article tp-0024- 0013. https://doi.org/10.48130/tp-0024-0013
There are 43 citations in total.

Details

Primary Language English
Subjects Environmental Rehabilitation and Restoration, Environmental Assessment and Monitoring, Natural Resource Management
Journal Section Research Article/Araştırma Makalesi
Authors

Innocent Ujah 0000-0003-4461-4031

Onuabuchi Nnenna Ani 0000-0001-6533-0869

Emmanuel Nneji This is me 0009-0004-4334-8493

Early Pub Date September 16, 2025
Publication Date October 15, 2025
Submission Date March 28, 2025
Acceptance Date August 11, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

APA Ujah, I., Ani, O. N., & Nneji, E. (2025). Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum). Trakya University Journal of Natural Sciences, 26(2), 174-181.
AMA Ujah I, Ani ON, Nneji E. Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum). Trakya Univ J Nat Sci. October 2025;26(2):174-181.
Chicago Ujah, Innocent, Onuabuchi Nnenna Ani, and Emmanuel Nneji. “Assessment of the Lead, Cadmium, Mercury, and Arsenic Adsorption Capacities of Edta-Modified and Umodified Cellulose Fibres from Elephant Grass (Pennisetum Purpureum)”. Trakya University Journal of Natural Sciences 26, no. 2 (October 2025): 174-81.
EndNote Ujah I, Ani ON, Nneji E (October 1, 2025) Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum). Trakya University Journal of Natural Sciences 26 2 174–181.
IEEE I. Ujah, O. N. Ani, and E. Nneji, “Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum)”, Trakya Univ J Nat Sci, vol. 26, no. 2, pp. 174–181, 2025.
ISNAD Ujah, Innocent et al. “Assessment of the Lead, Cadmium, Mercury, and Arsenic Adsorption Capacities of Edta-Modified and Umodified Cellulose Fibres from Elephant Grass (Pennisetum Purpureum)”. Trakya University Journal of Natural Sciences 26/2 (October2025), 174-181.
JAMA Ujah I, Ani ON, Nneji E. Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum). Trakya Univ J Nat Sci. 2025;26:174–181.
MLA Ujah, Innocent et al. “Assessment of the Lead, Cadmium, Mercury, and Arsenic Adsorption Capacities of Edta-Modified and Umodified Cellulose Fibres from Elephant Grass (Pennisetum Purpureum)”. Trakya University Journal of Natural Sciences, vol. 26, no. 2, 2025, pp. 174-81.
Vancouver Ujah I, Ani ON, Nneji E. Assessment of the lead, cadmium, mercury, and arsenic adsorption capacities of edta-modified and umodified cellulose fibres from elephant grass (Pennisetum purpureum). Trakya Univ J Nat Sci. 2025;26(2):174-81.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.