Review
BibTex RIS Cite

SPOR BİLİMLERİNDE YAPAY ZEKA ÇALIŞMALARININ İNCELENMESİ

Year 2025, Volume: 27 Issue: 1, 118 - 132, 30.04.2025

Abstract

Bu çalışma ile Web Of Science (Wos) veri tabanından spor bilimlerinde yapay zeka çalışmalarının bibliyometrik analizlerinin incelenmesi amaçlanmıştır. İlk olarak Wos veri tabanından 164 araştırma makalesine ulaşılmış, verilerin analizinde VOSviewer paket program kullanılmıştır. Yapılan analizler sonucunda, spor bilimlerinde yapay zeka ile ilgili ilk yayının 1995 yılında yayımlandığı, 2019 yılında ise çok önemli bir artış olduğu, 2023 yılından günümüze kadar ise yayınların artış eğiliminde olduğu görülmüştür. 2024 yılındaki yayın sayısının az olması, 2024 temmuz ayına kadar yayınlanan araştırmalar baz alınmasından kaynaklanmaktadır. 107 atıfla en fazla atıf alan makale “Motor Unit Control and Force Fluctuation During Fatigue”, 6 yayınla en fazla yayın yapan yazar “Kunze, Kyle N.”, 171 atıfla en fazla atıf alan yazarlar “De Luca ve Carlo J.” olmuştur. 226 atıfla en fazla atıf alan dergi “Knee Surgery, Sports Traumatology, Arthroscopy”, 8 yayınla en fazla yayın yapan kurum “Hosp Special Surg”, 171 atıfla en fazla atıf alan kurum “Boston Univ” olmuş, 23 yayın ve 613 atıfla en fazla yayın yapan ve atıf alan ülke ABD olmuştur. Kurumlar arası iş birliği ağında 11 kurum arasında en fazla iş birliği kırmızı renkteki 8 kurum, daha az iş birliğine sahip kurumlar ise yeşil renkteki 3 kurum olduğu görülmüştür. Ortak anahtar kelime ağında 12 anahtar kelimeye ulaşılmış, en fazla yoğunluk kırmızı (machine learning) ve sarı (artifical intelligence) renkteki anahtar kümeler olduğu görülmüştür. Yazarların ortak atıf alma ağında toplam 12 yazara ulaşılmış, en fazla atıf alma ağı 7 yazarla kırmızı kümeler, 5 ortak atıf alma ağıyla yeşil renkteki kümeler ise daha az atıf alan kümeler olmuştur. Sonuç olarak son dönemlerde spor bilimlerinde yapay zeka kullanımına yönelik oldukça fazla yayın yapıldığı ve konuya ilginin artığı görülmüştür.

References

  • 1. Armand S, Watelain E, Roux E, Mercier M, Lepoutre FX. Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees. Gait & Posture, 2007; 25(3): 475-484.
  • 2. Arslan K. Eğitimde yapay zekâ ve uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 2020; 11(1): 71-88.
  • 3. Barca M, Hızıroğlu M. 2000’li yıllarda Türkiye’de stratejik yönetim alanının entellektüel yapısı. Eskişehir Osmangazi Üniversitesi İ.İ.B.F. Dergisi, 2009; 4(1): 113-148.
  • 4. Bartlett R. Artificial intelligence in sports biomechanics: New dawn or false hope?. Journal of Sports Science and Medicine, 2006; 5(4): 474-479.
  • 5. Bongiovanni T, Trecroci A, Cavaggioni L, Rossi A, Perri E, Pasta G, Iaia FM, Alberti G. Importance of anthropometric features to predict physical performance in elite youth soccer: A machine learning approach. Research in Sports Medicine, 2021; 29(3): 213-224.
  • 6. Boyack KW, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?. Journal of the American Society for Information Science and Technology, 2010; 61(12): 2389-2404.
  • 7. Ceyhan MA, Çakir Z. Examination of fear of missing out (FOMO) states of students who study at the school of physical education and sports in terms of some variables. Education Quarterly Reviews, 2021; 4(4): 419-427. https://doi.org/10.31014/aior.1993.04.04.404
  • 8. Cobo MJ, López‐Herrera AG, Herrera‐Viedma E, Herrera F. Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 2011; 62(7): 1382-1402.
  • 9. Contessa P, Adam A, De Luca CJ. Motor unit control and force fluctuation during fatigue. Journal of Applied Physiology, 2009; 107(1): 235-243.
  • 10. Çakır Z, Ceyhan MA, Gönen M, Erbaş Ü. Yapay Zeka Teknolojilerindeki Gelişmeler ile Eğitim ve Spor Bilimlerinde Paradigma Değişimi. Dede Korkut Spor Bilimleri Dergisi, 2023; 1(2): 56-71.
  • 11. Dergaa I, Chamari K, Zmijewski P, Saad HB. From human writing to artificial intelligence generated text: Examining the prospects and potential threats of ChatGPT in academic writing. Biology of Sport, 2023; 40(2): 615-622.
  • 12. Feijóo C, Kwon Y, Bauer JM, Bohlin E, Howell B, Jain R, Potgieter P, Vu K, Whalley J, Xia J. Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. Telecommunications Policy, 2020; 44(6): 1-14.
  • 13. Gençoğlu C, Asan S. Dijital çağda sporcu beslenmesi ve yapay zeka. In: Kishalı NF, Özbay S, Ulupınar S, editors. Dijital çağda spor araştırmaları 1. Gaziantep: Özgür Yayınları; 2023. P. 1-91.
  • 14. Hotamışlı M, Erem I. Muhasebe ve finansman dergisi’nde yayınlanan makalelerin bibliyometrik analizi. Muhasebe ve Finansman Dergisi, 2014; (63): 1-20.
  • 15. Jo C, Ko S, Shin WC, Han HS, Lee MC, Ko T, Ro DH. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm. Knee Surgery, Sports Traumatology, Arthroscopy, 2020; 28(6): 1757-1764.
  • 16. Karafil AY, Abd SYB, Çifci ÖÜA, Kirbaş İ. E-sporda performans ve strateji optimizasyonu için yapay zeka kullanimi. 4. Bilsel International World Science And Research Congress; 22-23 June 2024; İstanbul,Türkiye.
  • 17. Karagoz B, Seref I. Yunus Emre ile ilgili araştırmaların bibliyometrik analizi. Akdeniz Eğitim Araştırmaları Dergisi, 2019; 13(27): 123-141.
  • 18. Karnuta JM, Churchill JL, Haeberle HS, Nwachukwu BU, Taylor SA, Ricchetti ET, Ramkumar PN. The value of artificial neural networks for predicting length of stay, discharge disposition, and inpatient costs after anatomic and reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2020; 29(11): 2385-2394.
  • 19. Kayıkçı M, Bozkurt A. Dijital çağda Z ve Alpha kuşağı, yapay zeka uygulamaları ve turizme yansımaları. Sosyal Bilimler Metinleri, 2018; (1): 54-64.
  • 20. Nawab SH, Wotiz RP, De Luca CJ. Decomposition of indwelling EMG signals. Journal of Applied Physiology, 2008; 105(2): 700-710.
  • 21. Novatchkov H, Baca A. Artificial intelligence in sports on the example of weight training. Journal of Sports Science and Medicine, 2013; 12(1): 27-37.
  • 22. Öniz M, Göçer İ. Yapay zekâ destekli mobil uygulamaların spor sakatlanmalarının önlenmesinde etkisi. Egzersiz ve Spor Bilimleri Araştırmaları Dergisi, 2024; 4(2): 74-92.
  • 23. Özsoy D, Özsoy Y, Karakuş O. Endüstri 5.0'da Spor. Fenerbahçe Üniversitesi Spor Bilimleri Dergisi, 2023; 3(2): 83-94.
  • 24. Öztop B. Artificial intelligence applications in sports medicine. III. Uluslararasi Avrasya Sağlik Bilimleri Kongresi; 28-29 Ağustos 2024; Trabzon, Türkiye.
  • 25. Pirim AGH. Yapay zeka. Yaşar Üniversitesi E-Dergisi, 2006; 1(1): 81-93.
  • 26. Pua YH, Kang H, Thumboo J, Clark RA, Chew ESX, Poon CLL, Chong HC, Yeo SJ. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2020; 28(10): 3207-3216.
  • 27. Puaschunder JM. Artificial diplomacy: A guide for public officials to conduct artificial intelligence. Journal of Applied Research in the Digital Economy, 2019; 1: 39-54.
  • 28. Ramkumar PN, Kunze KN, Haeberle HS, Karnuta JM, Luu BC, Nwachukwu BU, Williams RJ. Clinical and research medical applications of artificial intelligence. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2021; 37(5): 1694-1697.
  • 29. Ramkumar PN, Luu BC, Haeberle HS, Karnuta JM, Nwachukwu BU, Williams RJ. Sports medicine and artificial intelligence: A primer. The American Journal of Sports Medicine, 2022; 50(4): 1166-1174.
  • 30. Riganello F, Dolce G, Sannita, WG. Heart rate variability and the central autonomic network in severe disorder of Consciousness. Journal of Rehabilitation Medicine, 2012; 44(6): 495-501.
  • 31. Savelberg HHCM, De Lange ALH. Assessment of the horizontal, fore- aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clinical Biomechanics, 1999; 14(8): 585-592.
  • 32. Şentürk E, Özer M. Sporda teknolojik gelişmeler. Fenerbahçe Üniversitesi Spor Bilimleri Dergisi, 2022; 2(2): 49-63.
  • 33. Şimşek ÖG. Endüstri 4.0 ve Yapay Zeka Çerçevesinde genç işgücü için aktif işgücü programlarının dönüşümü [Uzmanlık tezi]. Ankara: Türkiye İş Kurumu Genel Müdürlüğü; 2023.
  • 34. Yi PH, Wei J, Kim TK, Sair HI, Hui F, Hager GD, Fritz J, Oni JK. Automated detection & classification of knee arthroplasty using deep learning. The Knee, 2020; 27(2): 535-542.

A Review of Artificial Intelligence Studies in Sports Sciences

Year 2025, Volume: 27 Issue: 1, 118 - 132, 30.04.2025

Abstract

This article examines the bibliometric analyses of artificial intelligence studies in sports sciences using the Web of Science (WoS) database. Initially, 164 research articles were accessed from the WoS database, and the VOSviewer software package was used for data analysis. It was observed that the first publication related to artificial intelligence in sports sciences was published in 1995, with a significant increase in 2019, and the number of publications has shown an upward trend from 2023 to the present. The low number of publications in 2024 is due to only considering studies published up to July 2024. The most cited article, with 107 citations, is "Motor Unit Control and Force Fluctuation During Fatigue," while the author with the most publications, with six papers, is “Kunze, Kyle N.” The most cited authors are “De Luca and Carlo J.” with 171 citations. The journal with the most citations, (226), is "Knee Surgery, Sports Traumatology, Arthroscopy," and the institution with the most publications (8), is “Hosp Special Surg,” while the institution with the most citations, (171), is “Boston Univ.” The country with the most publications (23) and citations (613), is the USA. In the institutional collaboration network, among 11 institutions the highest collaboration was observed between the 8 institutions marked in red, while 3 institutions marked in green had fewer collaborations. In the co-keyword network, 12 keywords were identified, with the most dense clusters being red (machine learning) and yellow (artificial intelligence). In the authors’ co-citation network,12 authors were identified, with the most cited cluster containing 7 authors in red, while the green clusters, consisting of 5 authors, had fewer citations. In conclusion, there has been a significant increase in publications related to the use of artificial intelligence in sports sciences in recent years, indicating a growing interest in the subject.

References

  • 1. Armand S, Watelain E, Roux E, Mercier M, Lepoutre FX. Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees. Gait & Posture, 2007; 25(3): 475-484.
  • 2. Arslan K. Eğitimde yapay zekâ ve uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 2020; 11(1): 71-88.
  • 3. Barca M, Hızıroğlu M. 2000’li yıllarda Türkiye’de stratejik yönetim alanının entellektüel yapısı. Eskişehir Osmangazi Üniversitesi İ.İ.B.F. Dergisi, 2009; 4(1): 113-148.
  • 4. Bartlett R. Artificial intelligence in sports biomechanics: New dawn or false hope?. Journal of Sports Science and Medicine, 2006; 5(4): 474-479.
  • 5. Bongiovanni T, Trecroci A, Cavaggioni L, Rossi A, Perri E, Pasta G, Iaia FM, Alberti G. Importance of anthropometric features to predict physical performance in elite youth soccer: A machine learning approach. Research in Sports Medicine, 2021; 29(3): 213-224.
  • 6. Boyack KW, Klavans R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?. Journal of the American Society for Information Science and Technology, 2010; 61(12): 2389-2404.
  • 7. Ceyhan MA, Çakir Z. Examination of fear of missing out (FOMO) states of students who study at the school of physical education and sports in terms of some variables. Education Quarterly Reviews, 2021; 4(4): 419-427. https://doi.org/10.31014/aior.1993.04.04.404
  • 8. Cobo MJ, López‐Herrera AG, Herrera‐Viedma E, Herrera F. Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 2011; 62(7): 1382-1402.
  • 9. Contessa P, Adam A, De Luca CJ. Motor unit control and force fluctuation during fatigue. Journal of Applied Physiology, 2009; 107(1): 235-243.
  • 10. Çakır Z, Ceyhan MA, Gönen M, Erbaş Ü. Yapay Zeka Teknolojilerindeki Gelişmeler ile Eğitim ve Spor Bilimlerinde Paradigma Değişimi. Dede Korkut Spor Bilimleri Dergisi, 2023; 1(2): 56-71.
  • 11. Dergaa I, Chamari K, Zmijewski P, Saad HB. From human writing to artificial intelligence generated text: Examining the prospects and potential threats of ChatGPT in academic writing. Biology of Sport, 2023; 40(2): 615-622.
  • 12. Feijóo C, Kwon Y, Bauer JM, Bohlin E, Howell B, Jain R, Potgieter P, Vu K, Whalley J, Xia J. Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy. Telecommunications Policy, 2020; 44(6): 1-14.
  • 13. Gençoğlu C, Asan S. Dijital çağda sporcu beslenmesi ve yapay zeka. In: Kishalı NF, Özbay S, Ulupınar S, editors. Dijital çağda spor araştırmaları 1. Gaziantep: Özgür Yayınları; 2023. P. 1-91.
  • 14. Hotamışlı M, Erem I. Muhasebe ve finansman dergisi’nde yayınlanan makalelerin bibliyometrik analizi. Muhasebe ve Finansman Dergisi, 2014; (63): 1-20.
  • 15. Jo C, Ko S, Shin WC, Han HS, Lee MC, Ko T, Ro DH. Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm. Knee Surgery, Sports Traumatology, Arthroscopy, 2020; 28(6): 1757-1764.
  • 16. Karafil AY, Abd SYB, Çifci ÖÜA, Kirbaş İ. E-sporda performans ve strateji optimizasyonu için yapay zeka kullanimi. 4. Bilsel International World Science And Research Congress; 22-23 June 2024; İstanbul,Türkiye.
  • 17. Karagoz B, Seref I. Yunus Emre ile ilgili araştırmaların bibliyometrik analizi. Akdeniz Eğitim Araştırmaları Dergisi, 2019; 13(27): 123-141.
  • 18. Karnuta JM, Churchill JL, Haeberle HS, Nwachukwu BU, Taylor SA, Ricchetti ET, Ramkumar PN. The value of artificial neural networks for predicting length of stay, discharge disposition, and inpatient costs after anatomic and reverse shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2020; 29(11): 2385-2394.
  • 19. Kayıkçı M, Bozkurt A. Dijital çağda Z ve Alpha kuşağı, yapay zeka uygulamaları ve turizme yansımaları. Sosyal Bilimler Metinleri, 2018; (1): 54-64.
  • 20. Nawab SH, Wotiz RP, De Luca CJ. Decomposition of indwelling EMG signals. Journal of Applied Physiology, 2008; 105(2): 700-710.
  • 21. Novatchkov H, Baca A. Artificial intelligence in sports on the example of weight training. Journal of Sports Science and Medicine, 2013; 12(1): 27-37.
  • 22. Öniz M, Göçer İ. Yapay zekâ destekli mobil uygulamaların spor sakatlanmalarının önlenmesinde etkisi. Egzersiz ve Spor Bilimleri Araştırmaları Dergisi, 2024; 4(2): 74-92.
  • 23. Özsoy D, Özsoy Y, Karakuş O. Endüstri 5.0'da Spor. Fenerbahçe Üniversitesi Spor Bilimleri Dergisi, 2023; 3(2): 83-94.
  • 24. Öztop B. Artificial intelligence applications in sports medicine. III. Uluslararasi Avrasya Sağlik Bilimleri Kongresi; 28-29 Ağustos 2024; Trabzon, Türkiye.
  • 25. Pirim AGH. Yapay zeka. Yaşar Üniversitesi E-Dergisi, 2006; 1(1): 81-93.
  • 26. Pua YH, Kang H, Thumboo J, Clark RA, Chew ESX, Poon CLL, Chong HC, Yeo SJ. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2020; 28(10): 3207-3216.
  • 27. Puaschunder JM. Artificial diplomacy: A guide for public officials to conduct artificial intelligence. Journal of Applied Research in the Digital Economy, 2019; 1: 39-54.
  • 28. Ramkumar PN, Kunze KN, Haeberle HS, Karnuta JM, Luu BC, Nwachukwu BU, Williams RJ. Clinical and research medical applications of artificial intelligence. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2021; 37(5): 1694-1697.
  • 29. Ramkumar PN, Luu BC, Haeberle HS, Karnuta JM, Nwachukwu BU, Williams RJ. Sports medicine and artificial intelligence: A primer. The American Journal of Sports Medicine, 2022; 50(4): 1166-1174.
  • 30. Riganello F, Dolce G, Sannita, WG. Heart rate variability and the central autonomic network in severe disorder of Consciousness. Journal of Rehabilitation Medicine, 2012; 44(6): 495-501.
  • 31. Savelberg HHCM, De Lange ALH. Assessment of the horizontal, fore- aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clinical Biomechanics, 1999; 14(8): 585-592.
  • 32. Şentürk E, Özer M. Sporda teknolojik gelişmeler. Fenerbahçe Üniversitesi Spor Bilimleri Dergisi, 2022; 2(2): 49-63.
  • 33. Şimşek ÖG. Endüstri 4.0 ve Yapay Zeka Çerçevesinde genç işgücü için aktif işgücü programlarının dönüşümü [Uzmanlık tezi]. Ankara: Türkiye İş Kurumu Genel Müdürlüğü; 2023.
  • 34. Yi PH, Wei J, Kim TK, Sair HI, Hui F, Hager GD, Fritz J, Oni JK. Automated detection & classification of knee arthroplasty using deep learning. The Knee, 2020; 27(2): 535-542.
There are 34 citations in total.

Details

Primary Language English
Subjects Sports Science and Exercise (Other)
Journal Section Review
Authors

İlhan Gözen 0000-0002-4682-967X

Publication Date April 30, 2025
Submission Date October 10, 2024
Acceptance Date April 24, 2025
Published in Issue Year 2025 Volume: 27 Issue: 1

Cite

APA Gözen, İ. (2025). A Review of Artificial Intelligence Studies in Sports Sciences. Turkish Journal of Sport and Exercise, 27(1), 118-132.
AMA Gözen İ. A Review of Artificial Intelligence Studies in Sports Sciences. Turk J Sport Exe. April 2025;27(1):118-132.
Chicago Gözen, İlhan. “A Review of Artificial Intelligence Studies in Sports Sciences”. Turkish Journal of Sport and Exercise 27, no. 1 (April 2025): 118-32.
EndNote Gözen İ (April 1, 2025) A Review of Artificial Intelligence Studies in Sports Sciences. Turkish Journal of Sport and Exercise 27 1 118–132.
IEEE İ. Gözen, “A Review of Artificial Intelligence Studies in Sports Sciences”, Turk J Sport Exe, vol. 27, no. 1, pp. 118–132, 2025.
ISNAD Gözen, İlhan. “A Review of Artificial Intelligence Studies in Sports Sciences”. Turkish Journal of Sport and Exercise 27/1 (April2025), 118-132.
JAMA Gözen İ. A Review of Artificial Intelligence Studies in Sports Sciences. Turk J Sport Exe. 2025;27:118–132.
MLA Gözen, İlhan. “A Review of Artificial Intelligence Studies in Sports Sciences”. Turkish Journal of Sport and Exercise, vol. 27, no. 1, 2025, pp. 118-32.
Vancouver Gözen İ. A Review of Artificial Intelligence Studies in Sports Sciences. Turk J Sport Exe. 2025;27(1):118-32.

Turkish Journal of Sport and Exercise is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).