Review
BibTex RIS Cite

Böceklerde Sıcaklık Değişimlerinin Davranışsal ve Fizyolojik Etkileri: Lepidoptera Takımı Üzerine Bir İnceleme

Year 2023, Volume: 4 Issue: 2, 102 - 115, 14.11.2023

Abstract

İklim değişikliği ve küresel ısınma, günden güne etkisini daha çok hissettiğimiz küresel bir kriz haline gelmiştir. Bu kriz kendisini en çok yükselen yeryüzü sıcaklıklarıyla göstermektedir. Ekosistemin olmazsa olmazları böcekler ile böcekler sınıfının en kalabalık takımlarından olan Lepidoptera’nın sıcaklık değişimlerinden etkilenmesi kaçınılmazdır. Bu etkilenme tür ve populasyon düzeyinde farklı ve çeşitli şekillerde ortaya çıkabilir. Derleme çalışmamız Lepidoptera’ya ait böcek türlerinin sıcaklık değişimlerinden nasıl ve ne boyutlarda etkilendiğine dair araştırmaları içermektedir.

Ethical Statement

'Böceklerde Sıcaklık Değişimlerinin Davranışsal ve Fizyolojik Etkileri: Lepidoptera Takımı Üzerine Bir İnceleme' isimli çalışmanın, etik kurul izni gerektirmeyen çalışmalar arasında yer aldığını beyan ederim/ederiz.

Supporting Institution

Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü. Proje Numarası: 2019-054.

Project Number

2019-054.

Thanks

Bu çalışma Balıkesir Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir. Proje Numarası: 2019-054.

References

  • 1. Martin RA, da Silva CR, Moore MP, Diamond SE. When will a changing climate outpace adaptive evolution? Wiley Interdisciplinary Reviews: Climate Change 2023;e852. DOI: 10.1002/wcc.852
  • 2. Jeffs CT, Lewis OT. Effects of climate warming on host-parasitoid interactions. Ecological Entomology 2013;38(3), 209–218. https://doi.org/10.1111/een.12026
  • 3. Ahad AM, Ferdous ASM: A text book of ecology. Himachal Publication Bishal Book Complex; Banglabazar, Dhaka: 2019.
  • 4. Zellweger F, Baltensweiler A, Ginzler C, Roth T, Braunisch V, Bugmann H, Bollmann K. Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure. Journal of Biogeography 2016;43(6):1080–1090. https://doi.org/10.1111/jbi.12696
  • 5. Abatenh E, Gizaw B, Tsegaye Z, Tefera G. Microbial Function on Climate Change – A Review. Environment Pollution and Climate Change 2018;02(01). https://doi.org/10.4172/2573-458x.1000147
  • 6. Rummukainen M. Changes in climate and weather extremes in the 21st century. Wiley Interdisciplinary Reviews: Climate Change 2012;3(2):115–129. https://doi.org/10.1002/wcc.160
  • 7. Sondergard SE. Climate balance: a balanced and realistic view of climate change. Tate Publishing: USA; 2009.
  • 8. Saltzman B. Dynamical paleoclimatology: generalized theory of global climate change. Choice Reviews Online 2003;40(05):40–2841. https://doi.org/10.5860/choice.40-2841
  • 9. IPCC. Summary for Policymakers. In: Global warming of 1.5˚C. An IPCC Special Report on the impacts of global warming of 1.5˚C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 2018;32.
  • 10. Doyle A. The heat is on: Taking stock of global climate ambition. NDC Global Outlook Report, United Nations Development Programme and United Nations Framework Convention on Climate Change. https://www.undp.org › undp › climate-change › NDC_Outlook_Report_2019.
  • 11. NOAA. National Centers for Environmental Information, Monthly Global Climate Report for July 2020, published online August 2020, retrieved on September 15, 2019 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202007.
  • 12. Stange EE, Ayres MP. Climate change impacts: insects. John Wiley & Sons, Ltd: Chichester; 2010 DOI: 10.1002/9780470015902.a0022555
  • 13. Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology 2018;63(1):31–45. https://doi.org/10.1146/annurev-ento-020117-043348
  • 14. Chapman RF. The Insects Structure and Function. Cambridge University Press, New York¸1998.
  • 15. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, et al. Animal biodiversity: an outline of higher level classification and survey of taxonomic richness. Auckland, New Zealand: Magnolia Press; 2011.
  • 16. Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of lepidoptera (Butterflies and Moths). PLOS ONE 2013;8(11):e80875. https://doi.org/10.1371/journal.pone.0080875
  • 17. Colinet H, Sinclair BJ, Vernon P, Renault D. Insects in fluctuating thermal environments. Annual Review of Entomology 2015;60(1),123–140. https://doi.org/10.1146/annurev-ento-010814-021017
  • 18. Denlinger DL, Yocum GD. Temperature sensitivity in insects and application in integrated pest management. CRC Press: New York; 2019.
  • 19. Cui X, Wan F, Xie M, Liu T. Effects of Heat Shock on Survival and Reproduction of Two Whitefly Species, Trialeurodes vaporariorum and Bemisia tabaci Biotype B. J Insect Sci 2008;8(24):1–10. https://doi.org/10.1673/031.008.2401
  • 20. Dingle H, Drake VA. What is migration? BioScience 2007;57(2):113–121. https://doi.org/10.1641/b570206
  • 21. Both C, Bouwhuis S, Lessells CM, Visser ME. Climate change and population declines in a long-distance migratory bird. Nature 2006;441(7089):81–83. https://doi.org/10.1038/nature04539
  • 22. Sheikh AA, Rehman N Z, Kumar R. Diverse adaptations in insects: A review. Journal of entomology and zoology studies 2017;5(2):343-350.
  • 23. Schlemmer M. Effect of temperature on development and reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae) (Doctoral dissertation). North-West University, Potchefstroom; 2018.
  • 24. Harrison JF, Woods HA, Roberts SP. Ecological and environmental physiology of insects. Oxford University Press, New York; 2012. https://doi.org/10.1093/acprof:oso/9780199225941.001.0001
  • 25. Huang L, Xue F, Chen C, Guo X, Tang J, Zhong L, He H. Effects of temperature on life‐history traits of the newly invasive fall armyworm, Spodoptera frugiperda in Southeast China. Ecology and Evolution 2021;11(10):5255–5264. https://doi.org/10.1002/ece3.7413
  • 26. Dahi HF, Ibrahem WG, Ali M. Heat Requirements for the Development of the Black cutworm, Agrotis ipsilon (Hüfnagel) (Noctuidae: Lepidoptera). Egyptian Academic Journal of Biological Sciences. A, Entomology 2009;2(1):117–124. https://doi.org/10.21608/eajbsa.2009.15502
  • 27. Fu D, He H, Zou C, Xiao H, Xue F. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: Breaking the temperature–size rule. Journal of Thermal Biology 2016;61:115–118. https://doi.org/10.1016/j.jtherbio.2016.09.006
  • 28. Bürgi LP, Mills NJ. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes. Journal of Insect Physiology 2012;58(9):1184–1191. https://doi.org/10.1016/j.jinsphys.2012.05.017
  • 29. Soltani Orang F, Ranjbar Aghdam H, Abbasipour H, Askarianzadeh A. Effect of temperature on developmental rate of Sesamia cretica (Lepidoptera: Noctuidae) immature stages. Journal of Insect Science 2014;14(1):197.
  • 30. Moallem Z, Karimi-Malati A, Sahragard A, Zibaee A. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). Journal of Insect Science 2017;17(1). https://doi.org/10.1093/jisesa/iex001
  • 31. Chen Y, Chen D, Yang M, Liu J. The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022;13(2):211. https://doi.org/10.3390/insects13020211
  • 32. Golizadeh A, Kamali K, Fathipour Y, Abbasipour H. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-pacific Entomology 2009;12(4):207–212. https://doi.org/10.1016/j.aspen.2009.05.002
  • 33. Aguilon DJ, Medina C, Velasco LRI. Effects of Larval Rearing Temperature and Host Plant Condition on the Development, Survival, and Coloration of African Armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). Journal of Environmental Science and Management 2015;18(1):54–60. https://doi.org/10.47125/jesam/2015_1/06
  • 34. Zulfiqar M, Sabri MA, Raza MA, Hamza A, Hayat A, Khan AR. Effect of temperature and relative humidity on the population dynamics of some insect pests of maize. Pakistan Journal of Life and Social Science 2010;8(1):16–18. https://www.cabdirect.org/abstracts/20103299057.html
  • 35. Dinesh K, Pandey JP, Sinha, AK, Prasad BC. Temperature discerns fate of Antheraea mylitta Drury eggs during embryonic development. Journal of Entomology 2012;9(4):220-230.
  • 36. Tamiru A, Getu E, Jembere B, Bruce T. Effect of temperature and relative humidity on the development and fecundity of Chilo partellus (Swinhoe)(Lepidoptera: Crambidae). Bulletin of Entomological Research 2012;102(1):9-15.
  • 37. Guo S, Qin Y. Effects of temperature and humidity on emergence dynamics of Plutella xylostella (Lepidoptera: Plutellidae). Journal of economic entomology 2010;103(6):2028-2033.
  • 38. Throne JE, Weaver DK. Impact of temperature and relative humidity on life history parameters of adult Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of Stored Products Research 2013;55:128-133.
  • 39. Ebrahimi N, Talebi AA, Fathipour Y. Effects of short-term heat shock of eggs on the development and fecundity of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Crop Protection 2015;4(1):73–83. https://www.sid.ir/en/VEWSSID/J_pdf/5067820150109.pdf
  • 40. Liu Y, Li X, Yan X, Li G, Luo C, Ying H. Effects of Short-Term High Temperatures on Survival and Reproduction of Trabala vishnou gigantina Yang (Lepidoptera: Lasiocampidae). Pakistan Journal of Zoology 2021;54(1). https://doi.org/10.17582/journal.pjz/20201105081124
  • 41. Na JH, Ryoo MI. The influence of temperature on development of Plodia interpunctella (Lepidoptera: Pyralidae) on dried vegetable commodities. Journal of Stored Products Research 2000;36(2):125–129. https://doi.org/10.1016/s0022-474x(99)00039-9
  • 42. Mironidis GK, Savopoulou-Soultani M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology 2010;35(2):59–69. https://doi.org/10.1016/j.jtherbio.2009.11.001
  • 43. Qin J, Liu Y, Zhang L, Cheng Y, LiZhi L, Jiang X. Effects of temperatures on the development and reproduction of the armyworm, Mythimna roseilinea: Analysis using an age-stage, two-sex life table. Journal of Integrative Agriculture 2018;17(7):1506–1515. https://doi.org/10.1016/s2095-3119(17)61856-2
  • 44. Cerutti F, Bigler F, Eden G, Bosshart S. Optimal larval density and quality control aspects in mass rearing of the Mediterranean flour moth, Ephestia kuehniella Zell. (Lep., Phycitidae). Journal of Applied Entomology 1992;114(1–5):353–361. https://doi.org/10.1111/j.1439-0418.1992.tb01139.x
  • 45. Husain M, Alwaneen WS, Mehmood K, Rasool KG, Tufail M, Aldawood AS. Biological Traits of Cadra cautella (Lepidoptera: Pyralidae) Reared on Khodari Date Fruits Under Different Temperature Regimes. Journal of Economic Entomology 2017;110(4):1923–1928. https://doi.org/10.1093/jee/tox162
  • 46. Aldawood AS, Rasool KG, Alrukban AH, Soffan A, Husain M, Sutanto KD, Tufail M. Effects of Temperature on the Development of Ephestia cautella (Walker) (Pyralidae: Lepidoptera): A Case Study for its Possible Control Under Storage Conditions. Pakistan Journal of Zoology 2013;45(6):1573–1578. https://www.cabdirect.org/cabdirect/abstract/20143049551
  • 47. Sohail M, Aqueel MA, Ellis J, Afzal M, Raza AM. Seasonal abundance of greater wax moths (Galleria mellonella L.) in hives of western honey bees (Apis mellifera L.) correlates with minimum and maximum ambient temperature. Journal of Apicultural Research 2017;56(4):416–420. https://doi.org/10.1080/00218839.2017.1335824
  • 48. Shirai Y. Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bulletin of Entomological Research 2000;90(4):357–364. https://doi.org/10.1017/s0007485300000481
  • 49. Liu J, Liu M, Yang M, Kontodimas DC, Yu X, Qi-Xian L. Temperature-dependent development of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae) on Platycarya strobilacea. Journal of Asia-pacific Entomology 2014;17(4):803–810. https://doi.org/10.1016/j.aspen.2014.07.012
  • 50. Liu JF, Yang MF, Hu JF, Han C. Effects of temperature on development and survival of Orthopygia glaucinalis (Lepidoptera: Pyralidae) reared on Platycarya strobilacea. Journal of economic entomology 2015;108(2):504-514.
  • 51. Hance T, van Baaren J, Vernon, P, Boivin G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 2007;52:107-126.
  • 52. Khaliq A, Javed M, Sohail M, Sagheer M. Environmental effects on insects and their population dynamics. Journal of Entomology and Zoology studies 2014;2(2):1-7.

Behavioural and Physiological Effects of Temperature Changes in Insects: A Study on the Order Lepidoptera

Year 2023, Volume: 4 Issue: 2, 102 - 115, 14.11.2023

Abstract

Climate change and global warming have become a global crisis whose effects we feel more and more daily. This crisis shows clearly itself mostly with rising earth temperatures. It is inevitable that insects, which are necessary for the ecosystem, and Lepidoptera, one of the most populous orders of the insect class, will be affected by temperature changes. This impact may occur in different and diverse ways at the species and population level. Our review article includes research on how and to what extent insect species belonging to the order Lepidoptera are affected by temperature changes.

Project Number

2019-054.

References

  • 1. Martin RA, da Silva CR, Moore MP, Diamond SE. When will a changing climate outpace adaptive evolution? Wiley Interdisciplinary Reviews: Climate Change 2023;e852. DOI: 10.1002/wcc.852
  • 2. Jeffs CT, Lewis OT. Effects of climate warming on host-parasitoid interactions. Ecological Entomology 2013;38(3), 209–218. https://doi.org/10.1111/een.12026
  • 3. Ahad AM, Ferdous ASM: A text book of ecology. Himachal Publication Bishal Book Complex; Banglabazar, Dhaka: 2019.
  • 4. Zellweger F, Baltensweiler A, Ginzler C, Roth T, Braunisch V, Bugmann H, Bollmann K. Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure. Journal of Biogeography 2016;43(6):1080–1090. https://doi.org/10.1111/jbi.12696
  • 5. Abatenh E, Gizaw B, Tsegaye Z, Tefera G. Microbial Function on Climate Change – A Review. Environment Pollution and Climate Change 2018;02(01). https://doi.org/10.4172/2573-458x.1000147
  • 6. Rummukainen M. Changes in climate and weather extremes in the 21st century. Wiley Interdisciplinary Reviews: Climate Change 2012;3(2):115–129. https://doi.org/10.1002/wcc.160
  • 7. Sondergard SE. Climate balance: a balanced and realistic view of climate change. Tate Publishing: USA; 2009.
  • 8. Saltzman B. Dynamical paleoclimatology: generalized theory of global climate change. Choice Reviews Online 2003;40(05):40–2841. https://doi.org/10.5860/choice.40-2841
  • 9. IPCC. Summary for Policymakers. In: Global warming of 1.5˚C. An IPCC Special Report on the impacts of global warming of 1.5˚C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 2018;32.
  • 10. Doyle A. The heat is on: Taking stock of global climate ambition. NDC Global Outlook Report, United Nations Development Programme and United Nations Framework Convention on Climate Change. https://www.undp.org › undp › climate-change › NDC_Outlook_Report_2019.
  • 11. NOAA. National Centers for Environmental Information, Monthly Global Climate Report for July 2020, published online August 2020, retrieved on September 15, 2019 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202007.
  • 12. Stange EE, Ayres MP. Climate change impacts: insects. John Wiley & Sons, Ltd: Chichester; 2010 DOI: 10.1002/9780470015902.a0022555
  • 13. Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology 2018;63(1):31–45. https://doi.org/10.1146/annurev-ento-020117-043348
  • 14. Chapman RF. The Insects Structure and Function. Cambridge University Press, New York¸1998.
  • 15. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, et al. Animal biodiversity: an outline of higher level classification and survey of taxonomic richness. Auckland, New Zealand: Magnolia Press; 2011.
  • 16. Wahlberg N, Wheat CW, Peña C. Timing and patterns in the taxonomic diversification of lepidoptera (Butterflies and Moths). PLOS ONE 2013;8(11):e80875. https://doi.org/10.1371/journal.pone.0080875
  • 17. Colinet H, Sinclair BJ, Vernon P, Renault D. Insects in fluctuating thermal environments. Annual Review of Entomology 2015;60(1),123–140. https://doi.org/10.1146/annurev-ento-010814-021017
  • 18. Denlinger DL, Yocum GD. Temperature sensitivity in insects and application in integrated pest management. CRC Press: New York; 2019.
  • 19. Cui X, Wan F, Xie M, Liu T. Effects of Heat Shock on Survival and Reproduction of Two Whitefly Species, Trialeurodes vaporariorum and Bemisia tabaci Biotype B. J Insect Sci 2008;8(24):1–10. https://doi.org/10.1673/031.008.2401
  • 20. Dingle H, Drake VA. What is migration? BioScience 2007;57(2):113–121. https://doi.org/10.1641/b570206
  • 21. Both C, Bouwhuis S, Lessells CM, Visser ME. Climate change and population declines in a long-distance migratory bird. Nature 2006;441(7089):81–83. https://doi.org/10.1038/nature04539
  • 22. Sheikh AA, Rehman N Z, Kumar R. Diverse adaptations in insects: A review. Journal of entomology and zoology studies 2017;5(2):343-350.
  • 23. Schlemmer M. Effect of temperature on development and reproduction of Spodoptera frugiperda (Lepidoptera: Noctuidae) (Doctoral dissertation). North-West University, Potchefstroom; 2018.
  • 24. Harrison JF, Woods HA, Roberts SP. Ecological and environmental physiology of insects. Oxford University Press, New York; 2012. https://doi.org/10.1093/acprof:oso/9780199225941.001.0001
  • 25. Huang L, Xue F, Chen C, Guo X, Tang J, Zhong L, He H. Effects of temperature on life‐history traits of the newly invasive fall armyworm, Spodoptera frugiperda in Southeast China. Ecology and Evolution 2021;11(10):5255–5264. https://doi.org/10.1002/ece3.7413
  • 26. Dahi HF, Ibrahem WG, Ali M. Heat Requirements for the Development of the Black cutworm, Agrotis ipsilon (Hüfnagel) (Noctuidae: Lepidoptera). Egyptian Academic Journal of Biological Sciences. A, Entomology 2009;2(1):117–124. https://doi.org/10.21608/eajbsa.2009.15502
  • 27. Fu D, He H, Zou C, Xiao H, Xue F. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: Breaking the temperature–size rule. Journal of Thermal Biology 2016;61:115–118. https://doi.org/10.1016/j.jtherbio.2016.09.006
  • 28. Bürgi LP, Mills NJ. Ecologically relevant measures of the physiological tolerance of light brown apple moth, Epiphyas postvittana, to high temperature extremes. Journal of Insect Physiology 2012;58(9):1184–1191. https://doi.org/10.1016/j.jinsphys.2012.05.017
  • 29. Soltani Orang F, Ranjbar Aghdam H, Abbasipour H, Askarianzadeh A. Effect of temperature on developmental rate of Sesamia cretica (Lepidoptera: Noctuidae) immature stages. Journal of Insect Science 2014;14(1):197.
  • 30. Moallem Z, Karimi-Malati A, Sahragard A, Zibaee A. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). Journal of Insect Science 2017;17(1). https://doi.org/10.1093/jisesa/iex001
  • 31. Chen Y, Chen D, Yang M, Liu J. The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022;13(2):211. https://doi.org/10.3390/insects13020211
  • 32. Golizadeh A, Kamali K, Fathipour Y, Abbasipour H. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-pacific Entomology 2009;12(4):207–212. https://doi.org/10.1016/j.aspen.2009.05.002
  • 33. Aguilon DJ, Medina C, Velasco LRI. Effects of Larval Rearing Temperature and Host Plant Condition on the Development, Survival, and Coloration of African Armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). Journal of Environmental Science and Management 2015;18(1):54–60. https://doi.org/10.47125/jesam/2015_1/06
  • 34. Zulfiqar M, Sabri MA, Raza MA, Hamza A, Hayat A, Khan AR. Effect of temperature and relative humidity on the population dynamics of some insect pests of maize. Pakistan Journal of Life and Social Science 2010;8(1):16–18. https://www.cabdirect.org/abstracts/20103299057.html
  • 35. Dinesh K, Pandey JP, Sinha, AK, Prasad BC. Temperature discerns fate of Antheraea mylitta Drury eggs during embryonic development. Journal of Entomology 2012;9(4):220-230.
  • 36. Tamiru A, Getu E, Jembere B, Bruce T. Effect of temperature and relative humidity on the development and fecundity of Chilo partellus (Swinhoe)(Lepidoptera: Crambidae). Bulletin of Entomological Research 2012;102(1):9-15.
  • 37. Guo S, Qin Y. Effects of temperature and humidity on emergence dynamics of Plutella xylostella (Lepidoptera: Plutellidae). Journal of economic entomology 2010;103(6):2028-2033.
  • 38. Throne JE, Weaver DK. Impact of temperature and relative humidity on life history parameters of adult Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of Stored Products Research 2013;55:128-133.
  • 39. Ebrahimi N, Talebi AA, Fathipour Y. Effects of short-term heat shock of eggs on the development and fecundity of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Crop Protection 2015;4(1):73–83. https://www.sid.ir/en/VEWSSID/J_pdf/5067820150109.pdf
  • 40. Liu Y, Li X, Yan X, Li G, Luo C, Ying H. Effects of Short-Term High Temperatures on Survival and Reproduction of Trabala vishnou gigantina Yang (Lepidoptera: Lasiocampidae). Pakistan Journal of Zoology 2021;54(1). https://doi.org/10.17582/journal.pjz/20201105081124
  • 41. Na JH, Ryoo MI. The influence of temperature on development of Plodia interpunctella (Lepidoptera: Pyralidae) on dried vegetable commodities. Journal of Stored Products Research 2000;36(2):125–129. https://doi.org/10.1016/s0022-474x(99)00039-9
  • 42. Mironidis GK, Savopoulou-Soultani M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology 2010;35(2):59–69. https://doi.org/10.1016/j.jtherbio.2009.11.001
  • 43. Qin J, Liu Y, Zhang L, Cheng Y, LiZhi L, Jiang X. Effects of temperatures on the development and reproduction of the armyworm, Mythimna roseilinea: Analysis using an age-stage, two-sex life table. Journal of Integrative Agriculture 2018;17(7):1506–1515. https://doi.org/10.1016/s2095-3119(17)61856-2
  • 44. Cerutti F, Bigler F, Eden G, Bosshart S. Optimal larval density and quality control aspects in mass rearing of the Mediterranean flour moth, Ephestia kuehniella Zell. (Lep., Phycitidae). Journal of Applied Entomology 1992;114(1–5):353–361. https://doi.org/10.1111/j.1439-0418.1992.tb01139.x
  • 45. Husain M, Alwaneen WS, Mehmood K, Rasool KG, Tufail M, Aldawood AS. Biological Traits of Cadra cautella (Lepidoptera: Pyralidae) Reared on Khodari Date Fruits Under Different Temperature Regimes. Journal of Economic Entomology 2017;110(4):1923–1928. https://doi.org/10.1093/jee/tox162
  • 46. Aldawood AS, Rasool KG, Alrukban AH, Soffan A, Husain M, Sutanto KD, Tufail M. Effects of Temperature on the Development of Ephestia cautella (Walker) (Pyralidae: Lepidoptera): A Case Study for its Possible Control Under Storage Conditions. Pakistan Journal of Zoology 2013;45(6):1573–1578. https://www.cabdirect.org/cabdirect/abstract/20143049551
  • 47. Sohail M, Aqueel MA, Ellis J, Afzal M, Raza AM. Seasonal abundance of greater wax moths (Galleria mellonella L.) in hives of western honey bees (Apis mellifera L.) correlates with minimum and maximum ambient temperature. Journal of Apicultural Research 2017;56(4):416–420. https://doi.org/10.1080/00218839.2017.1335824
  • 48. Shirai Y. Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bulletin of Entomological Research 2000;90(4):357–364. https://doi.org/10.1017/s0007485300000481
  • 49. Liu J, Liu M, Yang M, Kontodimas DC, Yu X, Qi-Xian L. Temperature-dependent development of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae) on Platycarya strobilacea. Journal of Asia-pacific Entomology 2014;17(4):803–810. https://doi.org/10.1016/j.aspen.2014.07.012
  • 50. Liu JF, Yang MF, Hu JF, Han C. Effects of temperature on development and survival of Orthopygia glaucinalis (Lepidoptera: Pyralidae) reared on Platycarya strobilacea. Journal of economic entomology 2015;108(2):504-514.
  • 51. Hance T, van Baaren J, Vernon, P, Boivin G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 2007;52:107-126.
  • 52. Khaliq A, Javed M, Sohail M, Sagheer M. Environmental effects on insects and their population dynamics. Journal of Entomology and Zoology studies 2014;2(2):1-7.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Entomology
Journal Section Review Article
Authors

Erinç Çelik Biçer 0000-0002-7659-5528

Aylin Er 0000-0002-8108-8950

Olga Sak 0000-0003-4815-7798

Project Number 2019-054.
Publication Date November 14, 2023
Submission Date September 22, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

Vancouver Çelik Biçer E, Er A, Sak O. Böceklerde Sıcaklık Değişimlerinin Davranışsal ve Fizyolojik Etkileri: Lepidoptera Takımı Üzerine Bir İnceleme. TUBID. 2023;4(2):102-15.