Research Article
BibTex RIS Cite

Coğrafi Bilgi Sistemi (CBS) ve Parametre Puanlama Yöntemi İle Hakkâri İli Çığ Tehlike Haritasının Oluşturulması

Year 2022, , 71 - 78, 25.12.2022
https://doi.org/10.56130/tucbis.1177536

Abstract

Ülkemizde meydana gelen doğa kaynaklı bir afet olan çığdan dolayı can ve mal kayıpları yaşanabilmektedir. İklimsel koşullar ve topoğrafik etmenlerden ötürü Hakkâri İlinde geçmişten günümüze birçok çığ olayı yaşanmış ve yöre halkına ciddi kayıplar yaşatmıştır. Kaydedilen çığ vakaları dikkate alındığında Hakkâri İli 52 çığ afetine maruz kalarak ülke çapında bu afeti en fazla yaşayan illerden birisidir. Afet türüne ait parametrelerin ağırlık değerlerinin literatür verilerine göre belirlenmesi ve işlenmesi tehlike boyutunun anlaşılması açısından hayati öneme sahiptir. Çığ oluşumuna neden olan eğim, yükseklik, bakı, arazi kullanımı ve eğrisellik parametreleri bu çalışmada esas alınmıştır. Arazi kullanımı CORİNE–CLC-2012 verilerinden, eğim, bakı ve eğrisellik haritaları ise sayısal yükseklik modelinden elde edilmiştir. Gerçekleştirilen bu çalışmada puanlama yöntemi ile 7.095 〖km〗^2 yüzölçümüne sahip olan Hakkâri İlinin çığ tehlikesi ortaya konulmuştur. Tehlike haritasına bakıldığında yerleşim birimlerini etkileyecek çığ patikalarının yüksek oranda olduğu görülmüştür. Bu alanlar özellikle Hakkâri İlinin güneyi ve Hakkâri İli ile Şemdinli ilçesi arasındadır. Bu anlamda gerçekleştirilen bu çalışmada gelecekte oluşması muhtemel risklerin değerlendirilebilmesi, azaltılması, önleyici tedbirlerin alınması için bir altlık oluşturması ve karar vericileri yönlendirmesi amaçlanmıştır.

Thanks

Çalışmanın şekillenmesine ve yayınlanmasına katkı sunan sayın hakemlere ve editörlere çok teşekkür ederiz.

References

  • AFAD (2015) Bütünleşik Tehlike Haritalarının Hazırlanması, Çığ Temel Kılavuz, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3468/xfiles/cig_temel-kilavuz-tr_.pdf [Erişim Tarihi: 02.02.2022].
  • AFAD (2018). Türkiye'de Afet Yönetimi ve Doğa Kaynaklı Afet İstatistikleri Raporu, https://www.afad.gov.tr/kurumlar/afad.gov.tr/35429/xfiles/turkiye_de_afetler.pdf [Erişim Tarihi: 02.02.2022 ].
  • AFAD (2020). Afet Yönetimi Kapsamında 2019 Yılına Bakış ve Doğa Kaynaklı Olay İstatistikleri, https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/KurumsalRaporlar/Afet_Istatistikleri_2020_web.pdf: [Erişim Tarihi:02.02.2022].
  • AFAD (2021). Hakkari İl Afet Risk Azaltma Planı, https://hakkari.afad.gov.tr/kurumlar/hakkari.afad/irap-plani/Hakkari-IRAP-GUNCEL-.pdf [Erişim Tarihi:17.08.2022],
  • Albrecht V M, Jaeneke G, Sommerhoff W & Kellermann (1994). Wetter – Lawinen, In: Deutscher, Österreichischer A, herausgeber. Alpin-Lehrplan 9: 1–198.
  • Ancey C (2009). Snow avalanches. In: Delage P, Schrefler B, editors. Wiley & Sons, New York.
  • Aydın A, Bühler Y, Cristen M & Gürer İ (2014). Avalanche Situation İn Turkey and Back Calculation of Selected Events. Natural Hazards and Earth System Sciences, 14, 1145-1154. https://doi.org/10.5194/nhessd-2-581-2014
  • Butler D R & Walsh S J (1990). Lithologic, Structural, and Topographic İnfluences on Snow-Avalanche Path Location, Eastern Glacier National Park, Montana. Ann. Assoc. Am. Geogr. 80(3), 362–378. https://doi.org/10.1111/j.1467-8306.1990.tb00302.x
  • Bühler Y, Von Rickenbach D, Stoffel A, Margreth S Stoffel L & Christen M (2018). Automated Snow Avalanche Release Area Delineation-Validation Of Existing Algorithms And Proposition Of A New Object-Based Approach For Large-Scale Hazard İndication Mapping. Nat. Hazards Earth Syst. Sci. 18, 3235–3251. https://doi.org/10.5194/nhess-18-3235-2018
  • Cetinkaya S & Kocaman, S. (2022). Snow Avalanche Susceptıbılıty Mappıng For Davos, Swıtzerland, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1083–1090. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1083-2022, 2022
  • Choubin B, Borji M, Mosavi A, Sajedi-Hosseini F, Singh V, P & Shamshirband, S. (2019). Snow Avalanche Hazard Prediction Using Machine Learning Methods. Journal of Hydrology, 577, 123929. https://doi.org/10.1016/j.jhydrol.2019.123929
  • Corine Land Cover (2022). Land Cover. https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 [Erişim: 01.09.2022].
  • Covasnianu, A., Grigoraş, I. R., State, L. E., Balin, D., Hogaş, S. & Balin, I., (2011). Mapping Snow Avalanche Risk Using GIS Technique And 3D Modeling. Case Study- Ceahlau National Park. Rom. Journ. Phys., 3-4, 476-483.
  • Eckerstorfer M, Bühler Y, Frauenfelder R & Malnes E (2016). Remote Sensing of Snow Avalanches: Recent Advances, Potential, and Limitations. Cold Reg. Sci. Tehnol. 121, 126-140. https://doi.org/10.1016/j.coldregions.2015.11.001
  • Elmastaş N & Özcanlı M (2011), Bitlis İlinde Çığ Afet Alanlarının Tespiti Ve Çığ Risk Analizi, VI. Ulusal Coğrafya Sempozyumu, Ankara, 303-314.
  • Ghinoi A & Chung C J (2005). STARTER: A Statistical GIS-Based Model For The Prediction Of Snow Avalanche Susceptibility Using Terrrain Features: Application To Alta Val Badia, Italian Dolomites. Gemorphology, 66, 305-325. https://doi.org/10.1016/j.geomorph.2004.09.018
  • Göl C (2005). Çığ Olgusu ve Ormancılık. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1, 49-63.
  • Gürer İ & Yavaş Ö M (1994). Anadolu’da Çığ Olayları. Sivil Savunma Dergisi, 36-135, 15-30 994.
  • USGS (2022). United States Geological Survey https://earthexplorer.usgs.gov/ [Erişim: 01.09.2022].
  • İRAP (2021). İl Afet Risk Azaltma Planı (İRAP), https://hakkari.afad.gov.tr/kurumlar/hakkari.afad/irap-plani/Hakkâri-IRAP-GUNCEL-.pdf. [Erişim Tarihi: 29.08.2022].
  • İlerisoy Z, Gökşen F, Soyluk A & Takva Y (2022). Deprem Kaynaklı İkincil Afetler ve Türkiye Örneklemi. Online journal of Art and Design, 10(2), 138-148.
  • Koçyiğit A (2005). 2005.01.25, MW 5.9 Sütlüce (Hakkari) Depreminin Kaynağı: Başkale Fay Kuşağı, GD Türkiye, Deprem Sempozyumu, Kocaeli, Türkiye.
  • Kumar S & Snehmani Srivastava P K (2017) GIS-Based MCDA–AHP Modelling For Avalanche Susceptibility Mapping Of Nubra Valley Region, Indian Himalaya. Geocarto International 32(11):1254– 1267. https://doi.org/10.1080/10106049.2016.1206626
  • Kumar S & Snehmani Srivastava P K (2018) Geospatial Modelling And Mapping Of Snow Avalanche Susceptibility. Journal of the Indian Society of Remote Sensing 46(1):109–119. https://doi.org/10. 1007/s12524-017-0672-z
  • Kumar S, Snehmani Srivastava P K & Bhatiya S (2019) Geospatial Probabilistic Modelling For Release Area Mapping Of Snow Avalanches. Cold Reg Sci Technol 165(June):102813. https://doi.org/10.1016/j. coldregions.2019.102813
  • LaChapelle E R (1985). The ABC of Avalanche Safety. Seattle, Washington.
  • Maggioni M & Gruber U (2003). The Influence of Topographic Parameters on Avalancherelease Dimension and Frequency. Cold Regions Science and Tecknology, 37, 407-419. https://doi.org/10.1016/S0165-232X(03)00080-6
  • McClung D M & Schaerer P (2006). The Avalanche Handbook, 3rd edition. The Mountaineers Books, Seattle, WA, USA.
  • Mohammed A S, Naqvi AH & Firdouse Z (2015). An Assessment And İdentification Of Avalanche Hazard Sites İn Uri Sector And İts Surroundings On Himalayan Mountain. Springer, 1499-1510.
  • Moore I D, Grayson R B & Ladson A R (1991). Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 5, 3–30. https://doi.org/10.1002/hyp.3360050103
  • Munter W (1999). 3*3 Lawinen: Entscheiden in kritischen Situationen. Agentur Pohl and Schellhamer, Garmisch-Partenkirchen. ISBN 3-00-002060-8.
  • NAC (National Avalanche Center), (2014). Snow, Weather, and Avalanches: Observational Guidelines for Avalanche Programs in the United States, http:// www.fsavalanche.org/ [Erişim tarihi: 16.10.2014].
  • Nagarajan R, Venkataraman G & Snehamani H (2014). Rule Based Classification of Potential Snow Avalanche Areas. Natural Resoıurces and Conservation, 2, 11-24. https://doi.org/10.13189/nrc.2014.020201
  • Nasery S & Kalkan K (2021). Snow Avalanche Risk Mapping Using GIS-Based Multi-Criteria Decision Analysis: The Case Of Van, Turkey. Arabian Journal of Geosciences, 14(9), 782. https://doi.org/10.1007/s12517-021-07112-4
  • NGU (Geological Survey of Norway) (2010). Method For The Susceptibility Mapping Of Snow Avalanches İn Norway. Technical Report, 14 p.
  • Özşahin E & Kaymaz Ç K (2014). Avalanche Susceptibility and Risk Analysis of Eastern Anatolian Region Using GIS. Procedia-Social and Behavioral Sciences, 120, 663-672. https://doi.org/10.1016/j.sbspro.2014.02.147
  • Parshad R, Srivastava P K, Snehmani S G, Kumar S & Ganju A (2017) Snow Avalanche Susceptibility Mapping Using Remote Sensing And GIS İn Nubra-Shyok Basin, Himalaya, India. Indian J Sci Technol 10(31), 1–12. https://doi.org/10.17485/ijst/2017/v10i31/105647
  • Salm B, Burkard A & Gubler H U (1990). Berechnung von Fliesslawinen. Eine Anleitung fuer den Praktiker mit Beispielen. Mitteilungen des Eidgeno¨ssischen Institutes fur Schnee- und Lawinenforschung 47. Eidgeno¨ssischen Institutes fur Schneeund Lawinenforschung - Davos.
  • Sançar T (2018). Yüksekova Havzası’nın (Güneydoğu Türkiye) Yükselim Hızı Tarihçesi’nin Araştırılması. Türkiye Jeoloji Bülteni, 61(2), 207-240. https://doi.org/10.25288/tjb.439182
  • Schweizer J, Bruce Jamieson J & Schneebeli M (2003). Snow Avalanche Formation. Reviews of Geophysics,41(4). https://doi.org/10.1029/2002RG000123
  • Selçuk L (2013). An Avalanche Hazard Model for Bitlis Province, Turkey, Using GIS Based Multicriteria Decision Analysis. Turkish Journal of Earth Sciences, 22, 523-535. https://doi.org/10.3906/vet-1303-36
  • Simea I (2012). The Avalanches From Rodnei Mountains. Babeş-Bolyai University, Faculty Of Geography, PhD Thesis, 30p.
  • Singh D K, Mishra V D, Gusain H S, Gupta N & Singh AK (2019) Geospatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and in Situ Data. Journal of the Indian Society of Remote Sensing 47(3):513–526. https://doi. org/10.1007/s12524-018-00936-w
  • Singh V, Thakur P K, Garg V & Aggarwal S P (2018). Assessment of Snow Avalanche Susceptibility of Road Network-A Case Study of Alaknanda Basin. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Dehradun. https://doi.org/10.5194/isprs-archives-XLII-5-461-2018
  • Suk P & Klimanek M (2011). Creation of the Snoe Avalanche Susceptibility Map of the Krkonose Mountains Using GIS. Acta Universitatis Agriculturae et Silviculturae Mendelian e Brunensis, 28, 237-246. https://doi.org/10.11118/actaun201159050237
  • Taştekin A T (2003). Meteoroloji ve Çığ. Meteoroloji İşleri Genel Müdürlüğü, https://www.mgm.gov.tr/FILES/genel/makale/meteorolojivecig.pdf [Erişim Tarihi:17.08.2022].
  • Varol N (2022). Avalanche Susceptibility Mapping With The Use Of Frequency Ratio, Fuzzy and Classical Analytical Hierarchy Process For Uzungol Area, Turkey. Cold Reg. Sci. Technol. 194, 103439. https://doi.org/10.1016/j.coldregions.2021.103439
  • Yılmaz I (2010). Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61(4), 821- https://doi.org/10.1007/s12665-009-0394-9

Hakkari Avalanche Hazard Map Creation Using Geographic Information System (GIS) and Parameter Scoring Method

Year 2022, , 71 - 78, 25.12.2022
https://doi.org/10.56130/tucbis.1177536

Abstract

Loss of life, injury and material losses are experienced due to avalanche, which is a natural disaster that occurs almost every year in our country. Due to climatic conditions and topographic factors, many avalanches have occurred in Hakkari from past to present and have caused serious losses to the local people. Considering the recorded avalanche cases, Hakkari province is one of the provinces that experienced 52 avalanche disasters throughout the country. Determining and processing the weight values of the parameters of the disaster type according to the work area is of vital importance in terms of understanding the danger dimension. Slope, elevation, aspect, land use and curvature parameters that cause avalanche formation were taken as basis in this study. Land use was obtained from CORINE–CLC-2012 data and slope, aspect and curvature maps were obtained from Digital Elevation Model. In this study, the Avalanche hazard of Hakkari Province, which has a surface area of 7,095 〖km〗^2 , was revealed with the subjective scoring method. When the hazard map is examined, it is seen that there is a high rate of avalanche paths that will affect the settlements. These areas are especially in the south of Hakkari Province and between Hakkari Province and Şemdinli District. In this sense, in this study, it is aimed to evaluate possible risks that may occur in the future, to reduce them, to form a base for taking preventive measures and to guide decision makers.

References

  • AFAD (2015) Bütünleşik Tehlike Haritalarının Hazırlanması, Çığ Temel Kılavuz, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3468/xfiles/cig_temel-kilavuz-tr_.pdf [Erişim Tarihi: 02.02.2022].
  • AFAD (2018). Türkiye'de Afet Yönetimi ve Doğa Kaynaklı Afet İstatistikleri Raporu, https://www.afad.gov.tr/kurumlar/afad.gov.tr/35429/xfiles/turkiye_de_afetler.pdf [Erişim Tarihi: 02.02.2022 ].
  • AFAD (2020). Afet Yönetimi Kapsamında 2019 Yılına Bakış ve Doğa Kaynaklı Olay İstatistikleri, https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/KurumsalRaporlar/Afet_Istatistikleri_2020_web.pdf: [Erişim Tarihi:02.02.2022].
  • AFAD (2021). Hakkari İl Afet Risk Azaltma Planı, https://hakkari.afad.gov.tr/kurumlar/hakkari.afad/irap-plani/Hakkari-IRAP-GUNCEL-.pdf [Erişim Tarihi:17.08.2022],
  • Albrecht V M, Jaeneke G, Sommerhoff W & Kellermann (1994). Wetter – Lawinen, In: Deutscher, Österreichischer A, herausgeber. Alpin-Lehrplan 9: 1–198.
  • Ancey C (2009). Snow avalanches. In: Delage P, Schrefler B, editors. Wiley & Sons, New York.
  • Aydın A, Bühler Y, Cristen M & Gürer İ (2014). Avalanche Situation İn Turkey and Back Calculation of Selected Events. Natural Hazards and Earth System Sciences, 14, 1145-1154. https://doi.org/10.5194/nhessd-2-581-2014
  • Butler D R & Walsh S J (1990). Lithologic, Structural, and Topographic İnfluences on Snow-Avalanche Path Location, Eastern Glacier National Park, Montana. Ann. Assoc. Am. Geogr. 80(3), 362–378. https://doi.org/10.1111/j.1467-8306.1990.tb00302.x
  • Bühler Y, Von Rickenbach D, Stoffel A, Margreth S Stoffel L & Christen M (2018). Automated Snow Avalanche Release Area Delineation-Validation Of Existing Algorithms And Proposition Of A New Object-Based Approach For Large-Scale Hazard İndication Mapping. Nat. Hazards Earth Syst. Sci. 18, 3235–3251. https://doi.org/10.5194/nhess-18-3235-2018
  • Cetinkaya S & Kocaman, S. (2022). Snow Avalanche Susceptıbılıty Mappıng For Davos, Swıtzerland, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1083–1090. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1083-2022, 2022
  • Choubin B, Borji M, Mosavi A, Sajedi-Hosseini F, Singh V, P & Shamshirband, S. (2019). Snow Avalanche Hazard Prediction Using Machine Learning Methods. Journal of Hydrology, 577, 123929. https://doi.org/10.1016/j.jhydrol.2019.123929
  • Corine Land Cover (2022). Land Cover. https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 [Erişim: 01.09.2022].
  • Covasnianu, A., Grigoraş, I. R., State, L. E., Balin, D., Hogaş, S. & Balin, I., (2011). Mapping Snow Avalanche Risk Using GIS Technique And 3D Modeling. Case Study- Ceahlau National Park. Rom. Journ. Phys., 3-4, 476-483.
  • Eckerstorfer M, Bühler Y, Frauenfelder R & Malnes E (2016). Remote Sensing of Snow Avalanches: Recent Advances, Potential, and Limitations. Cold Reg. Sci. Tehnol. 121, 126-140. https://doi.org/10.1016/j.coldregions.2015.11.001
  • Elmastaş N & Özcanlı M (2011), Bitlis İlinde Çığ Afet Alanlarının Tespiti Ve Çığ Risk Analizi, VI. Ulusal Coğrafya Sempozyumu, Ankara, 303-314.
  • Ghinoi A & Chung C J (2005). STARTER: A Statistical GIS-Based Model For The Prediction Of Snow Avalanche Susceptibility Using Terrrain Features: Application To Alta Val Badia, Italian Dolomites. Gemorphology, 66, 305-325. https://doi.org/10.1016/j.geomorph.2004.09.018
  • Göl C (2005). Çığ Olgusu ve Ormancılık. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 1, 49-63.
  • Gürer İ & Yavaş Ö M (1994). Anadolu’da Çığ Olayları. Sivil Savunma Dergisi, 36-135, 15-30 994.
  • USGS (2022). United States Geological Survey https://earthexplorer.usgs.gov/ [Erişim: 01.09.2022].
  • İRAP (2021). İl Afet Risk Azaltma Planı (İRAP), https://hakkari.afad.gov.tr/kurumlar/hakkari.afad/irap-plani/Hakkâri-IRAP-GUNCEL-.pdf. [Erişim Tarihi: 29.08.2022].
  • İlerisoy Z, Gökşen F, Soyluk A & Takva Y (2022). Deprem Kaynaklı İkincil Afetler ve Türkiye Örneklemi. Online journal of Art and Design, 10(2), 138-148.
  • Koçyiğit A (2005). 2005.01.25, MW 5.9 Sütlüce (Hakkari) Depreminin Kaynağı: Başkale Fay Kuşağı, GD Türkiye, Deprem Sempozyumu, Kocaeli, Türkiye.
  • Kumar S & Snehmani Srivastava P K (2017) GIS-Based MCDA–AHP Modelling For Avalanche Susceptibility Mapping Of Nubra Valley Region, Indian Himalaya. Geocarto International 32(11):1254– 1267. https://doi.org/10.1080/10106049.2016.1206626
  • Kumar S & Snehmani Srivastava P K (2018) Geospatial Modelling And Mapping Of Snow Avalanche Susceptibility. Journal of the Indian Society of Remote Sensing 46(1):109–119. https://doi.org/10. 1007/s12524-017-0672-z
  • Kumar S, Snehmani Srivastava P K & Bhatiya S (2019) Geospatial Probabilistic Modelling For Release Area Mapping Of Snow Avalanches. Cold Reg Sci Technol 165(June):102813. https://doi.org/10.1016/j. coldregions.2019.102813
  • LaChapelle E R (1985). The ABC of Avalanche Safety. Seattle, Washington.
  • Maggioni M & Gruber U (2003). The Influence of Topographic Parameters on Avalancherelease Dimension and Frequency. Cold Regions Science and Tecknology, 37, 407-419. https://doi.org/10.1016/S0165-232X(03)00080-6
  • McClung D M & Schaerer P (2006). The Avalanche Handbook, 3rd edition. The Mountaineers Books, Seattle, WA, USA.
  • Mohammed A S, Naqvi AH & Firdouse Z (2015). An Assessment And İdentification Of Avalanche Hazard Sites İn Uri Sector And İts Surroundings On Himalayan Mountain. Springer, 1499-1510.
  • Moore I D, Grayson R B & Ladson A R (1991). Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 5, 3–30. https://doi.org/10.1002/hyp.3360050103
  • Munter W (1999). 3*3 Lawinen: Entscheiden in kritischen Situationen. Agentur Pohl and Schellhamer, Garmisch-Partenkirchen. ISBN 3-00-002060-8.
  • NAC (National Avalanche Center), (2014). Snow, Weather, and Avalanches: Observational Guidelines for Avalanche Programs in the United States, http:// www.fsavalanche.org/ [Erişim tarihi: 16.10.2014].
  • Nagarajan R, Venkataraman G & Snehamani H (2014). Rule Based Classification of Potential Snow Avalanche Areas. Natural Resoıurces and Conservation, 2, 11-24. https://doi.org/10.13189/nrc.2014.020201
  • Nasery S & Kalkan K (2021). Snow Avalanche Risk Mapping Using GIS-Based Multi-Criteria Decision Analysis: The Case Of Van, Turkey. Arabian Journal of Geosciences, 14(9), 782. https://doi.org/10.1007/s12517-021-07112-4
  • NGU (Geological Survey of Norway) (2010). Method For The Susceptibility Mapping Of Snow Avalanches İn Norway. Technical Report, 14 p.
  • Özşahin E & Kaymaz Ç K (2014). Avalanche Susceptibility and Risk Analysis of Eastern Anatolian Region Using GIS. Procedia-Social and Behavioral Sciences, 120, 663-672. https://doi.org/10.1016/j.sbspro.2014.02.147
  • Parshad R, Srivastava P K, Snehmani S G, Kumar S & Ganju A (2017) Snow Avalanche Susceptibility Mapping Using Remote Sensing And GIS İn Nubra-Shyok Basin, Himalaya, India. Indian J Sci Technol 10(31), 1–12. https://doi.org/10.17485/ijst/2017/v10i31/105647
  • Salm B, Burkard A & Gubler H U (1990). Berechnung von Fliesslawinen. Eine Anleitung fuer den Praktiker mit Beispielen. Mitteilungen des Eidgeno¨ssischen Institutes fur Schnee- und Lawinenforschung 47. Eidgeno¨ssischen Institutes fur Schneeund Lawinenforschung - Davos.
  • Sançar T (2018). Yüksekova Havzası’nın (Güneydoğu Türkiye) Yükselim Hızı Tarihçesi’nin Araştırılması. Türkiye Jeoloji Bülteni, 61(2), 207-240. https://doi.org/10.25288/tjb.439182
  • Schweizer J, Bruce Jamieson J & Schneebeli M (2003). Snow Avalanche Formation. Reviews of Geophysics,41(4). https://doi.org/10.1029/2002RG000123
  • Selçuk L (2013). An Avalanche Hazard Model for Bitlis Province, Turkey, Using GIS Based Multicriteria Decision Analysis. Turkish Journal of Earth Sciences, 22, 523-535. https://doi.org/10.3906/vet-1303-36
  • Simea I (2012). The Avalanches From Rodnei Mountains. Babeş-Bolyai University, Faculty Of Geography, PhD Thesis, 30p.
  • Singh D K, Mishra V D, Gusain H S, Gupta N & Singh AK (2019) Geospatial Modeling for Automated Demarcation of Snow Avalanche Hazard Areas Using Landsat-8 Satellite Images and in Situ Data. Journal of the Indian Society of Remote Sensing 47(3):513–526. https://doi. org/10.1007/s12524-018-00936-w
  • Singh V, Thakur P K, Garg V & Aggarwal S P (2018). Assessment of Snow Avalanche Susceptibility of Road Network-A Case Study of Alaknanda Basin. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Dehradun. https://doi.org/10.5194/isprs-archives-XLII-5-461-2018
  • Suk P & Klimanek M (2011). Creation of the Snoe Avalanche Susceptibility Map of the Krkonose Mountains Using GIS. Acta Universitatis Agriculturae et Silviculturae Mendelian e Brunensis, 28, 237-246. https://doi.org/10.11118/actaun201159050237
  • Taştekin A T (2003). Meteoroloji ve Çığ. Meteoroloji İşleri Genel Müdürlüğü, https://www.mgm.gov.tr/FILES/genel/makale/meteorolojivecig.pdf [Erişim Tarihi:17.08.2022].
  • Varol N (2022). Avalanche Susceptibility Mapping With The Use Of Frequency Ratio, Fuzzy and Classical Analytical Hierarchy Process For Uzungol Area, Turkey. Cold Reg. Sci. Technol. 194, 103439. https://doi.org/10.1016/j.coldregions.2021.103439
  • Yılmaz I (2010). Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61(4), 821- https://doi.org/10.1007/s12665-009-0394-9
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Sacit Mutlu 0000-0003-1632-722X

İshak Cindioğlu 0000-0002-4085-9501

Ahmet Özkan Kul 0000-0003-1854-2206

Azad Sağlam Selçuk 0000-0003-4943-3870

Publication Date December 25, 2022
Published in Issue Year 2022

Cite

APA Mutlu, S., Cindioğlu, İ., Kul, A. Ö., Sağlam Selçuk, A. (2022). Coğrafi Bilgi Sistemi (CBS) ve Parametre Puanlama Yöntemi İle Hakkâri İli Çığ Tehlike Haritasının Oluşturulması. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(2), 71-78. https://doi.org/10.56130/tucbis.1177536

-