Research Article
BibTex RIS Cite

Uzaktan algılama ile yüzey alanı değişiminin belirlenmesi: Tuz Gölü örneği

Year 2025, Volume: 7 Issue: 1, 11 - 22, 19.06.2025
https://doi.org/10.56130/tucbis.1679860

Abstract

Günümüzde teknolojilerin ilerlemesi ve uygulamaların geliştirilmesiyle Uzaktan Algılama (UA) tekniğinin kullanımı yaygın bir hale gelmektedir.UA sayesinde arazi yüzey alanlarının belirlenmesi, değişim analizi yapılması, su kaynaklarının korunması, haritalanması ve sürdürülebilir yönetimi gibi uygulamalar hayata geçirilmeye başlanmıştır. Özellikle su/göl kaynaklarının yüzey alanlarındaki zamansal değişimlerin izlenmesinde UA ve Coğrafi Bilgi Sistemleri (CBS) büyük avantaj ve kolaylık sağlamaktadır. Seçilen bir su kaynağının yüzey alanının aylara veya yıllara göre zamansal değişimi gözlemlenmektedir. Göller, karasal alanlardaki önemli su kaynaklarıdır. Bu çalışmada Tuz Gölü'nün yüzey alanları son on yıl (2014-2023) için yaz aylarında (7. ve 8. aylar) UA tekniği kullanılarak incelenmiştir. Belirlenen çalışma alanında Landsat 8 OLI_TIRS uydu görüntüleri kullanılmıştır. Yöntem olarak kontrolsüz sınıflandırmadaki Iterative Self Organizing Data Analysis Technique (ISODATA) tercih edilmiştir. Bulutluluk oranının düşük olması nedeniyle görüntüler genellikle Ağustos ayında elde edilmiştir. Bu görüntülerden NDVI (Normalleştirilmiş Fark Bitki Örtüsü İndeksi) ve NDWI (Normalleştirilmiş Fark Su İndeksi) aracılığıyla bitki örtüsü/su alanı analizi yapılarak bölgedeki kuraklık ve sulak alan izlenmiştir. NDVI sonuçlarına göre en yüksek ve en düşük değerlerin sırasıyla 2022 yılında 0,73 ve 2017 yılında 0,59 olduğu tespit edilmiştir. 2022 yılında NDWI indeksi için bu değerler sırasıyla 0,66 ve -0,98 olarak hesaplanmıştır. Tuz Gölü'nün son 10 yıllık zaman diliminde ortalama yüzey alanı 999.464 km2 olarak bulunmuş olup, yıllar arasındaki değişimler birbirleriyle karşılaştırılmıştır.

References

  • Afshinfar, A., Vahidi, S., Hatamzadeh, V., & Nouri, P. (2023). RS-based assessment: Spatial-temporal changes in water basins of Tar and Havir Lakes. International Journal of Environment and Climate Change, 13(5), 159–178. https://doi.org/10.9734/ijecc/2023/v13i51757
  • Agarwal, N., & Tiwary, A. K. (2023). Change detection of Eastern Industrial Area of Jaipur city. In AIP Conference Proceedings, 2558(1) 020038. https://doi.org/10.1063/5.0120056
  • Ak, E., & Erdogan, M. A. (2022). Determining landscape irrigation need and sufficiency using remote sensing in the case of Hatay Mustafa Kemal University Campus. VIII. Uzaktan Algılama-CBS Sempozyumu (in Turkish), Ankara, Türkiye. https://doi.org/10.15659/uzalcbs2022.13025
  • Akin, B. (2019). Drought analysis in Tuz Lake Basin. Ulusal Çevre Bilimleri Araştırma Dergisi (in Turkish), 2, 44–56.
  • Akin, M., & Akin, G. (2007). Importance of water, water potential in Turkey, Water Basins and water pollution. Ankara University Journal of the Faculty of Languages and History-Geography, 47, 105–118.
  • Aksungur, N., & Firidin, S. (2008). Su kaynaklarının kullanımı ve sürdürülebilirlik (in Turkish). Aquaculture Studies, 2, 9–11.
  • Akuzum, T., Cakmak, B., & Gökalp, Z. (2010). Evaluation of water resources management in Turkey. Reserach Journal of Agricultural Sciences, 1, 67–74.
  • Aliyazicioglu, P. (2019). Determination of plant pattern by controlled classification method on satellite images (Publication No. 606151) (Master’s Thesis, Bursa Uludağ University]. YÖK National Thesis Center.
  • Arifin, S., Manula, J., Kartika, T., & Yulianto, F. (2022). Monitoring methods of coal mine exploitation and reclamation using Sentinel-2 data. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 17(2), 123-133.
  • Arslan, E. (2022). Bibliometric mapping in social sciences research using VOSviewer and an implementation. Anadolu University Journal of Social Sciences, 22, 33–56. https://doi.org/10.18037/ausbd.1227291
  • Bagdatli, M., Cüneyt, A., Istanbulluoglu, A., & Bayar, A. N. (2014). Determined soil and water resources potential using geographic information systems (GIS): Application of Tekirdag - Cerkezkoy Province. Afyon Kocatepe University Journal of Science and Engineering, 14, 17–25. https://doi.org/10.5578/fmbd.6760
  • Basar, U. G. (2008). Evaluation of urban heat island in İstanbul trough remote sensing techniques Publication No. 371090) (Master’s Thesis, İstanbul Technical University]. YÖK National Thesis Center.
  • Caf, D. (2019). A case study: detection of agricultural products by remote sensing. Journal of Agriculture, 2, 80–91.
  • Cengiz, T. M. (2005). Hydroctimatological analysis of Turkish lake levels (Publication No. 175825) [Doctoral Thesis, Istanbul Technical University]. YÖK National Thesis Center.
  • Chasia, S., Herrnegger, M., Juma, B., Kimuyu, J., Sitoki, L., & Olang, L. (2023). Analysis of land-cover changes in the Transboundary Sio-Malaba-Malakisi River Basin of East Africa: Towards identifying potential land-use transition regimes. African Geographical Review, 42, 170–186. https://doi.org/10.1080/19376812.2021.2007143
  • Ciftci, N., Kutlu, İ., Sahin, M., & Yilmaz, A. M. (2003). Water sources using in Konya Plain. Selçuk Journal of Agriculture and Food Sciences, 17, 36–40.
  • Cuce, H., Kalıpcı, E., Tas, B., & Yılmaz, M. (2023). Evaluation of the impacts on water quality from meteorological changes due to differences in altitude by GIS: A comparison for two morphologically different lakes. The Black Sea Journal of Sciences, 10, 1–26. https://doi.org/10.31466/kfbd.649297
  • Dirik, D., Eryilmaz, İ., & Erhan, T. (2023). A bibliometric analysis using VOSviewer of publications on post-truth. Sosyal Mucit Academic Review, 4, 164–188. https://doi.org/10.54733/smar.1271369
  • Dogan, Y. (2019). Discrimination and classification of vegetation species with multi-spectral camera by using unmanned aerial vehicles (Publication No. 572478) (Master’s Thesis, Konya Technical Uludağ University]. YÖK National Thesis Center.
  • Dorak, S., Asik, B. B., & Ozsoy, G. (2019). The Importance of Water Quality and Water Pollution in Agriculture: Case of Nilüfer Creek in Bursa. Journal of Agricultural Faculty of Bursa Uludag University, 33, 155–166.
  • Earthexplorer. (2024). Earthexplorer. Retrieved August 26, 2024, https://earthexplorer.usgs.gov/
  • Ekercin, S. (2007). Multitemporal change detection on the Salt Lake and surroundings by integrating remote sensing and geographic information systems (Publication No. 216815) [Doctoral Thesis, Istanbul Technical University]. YÖK National Thesis Center.
  • EOS. (2024). EOS Data Analytics. Retrieved August 26, 2024, from https://eos.com/make-an-analysis/ndwi/
  • ESA. (2009). ESA Advanced training course on land remote sensing: Image classification. ESA. Retrieved August 26, 2024, from https://eo4society.esa.int/resources/10th-advanced-land-2021/
  • Firmansyah, A., Hamzah, H., & Achmad, E. (2022). Pemodelan penginderaan jauh untuk estimasi simpanan karbon di Blok 1 PT Alam Bukit Tigapuluh. Journal of Science and Applicative Technology, 6, 99–108. https://doi.org/10.35472/jsat.v6i2.964
  • Farhan, M., Wu, T., Amin, M., Tariq, A., Guluzade, R., & Alzahrani, H. (2024). Monitoring and prediction of the LULC change dynamics using time series remote sensing data with Google Earth Engine. Physics and Chemistry of the Earth, Parts A/B/C, 136, 103689. https://doi.org/10.1016/j.pce.2024.103689
  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Garajeh, K. M., Haji, F., Tohidfar, M., Sadeqi, A., Ahmadi, R., & Kariminejad, N. (2024). Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine. Scientific reports, 14(1), 5469. https://doi.org/10.1038/s41598-024-56160-9
  • Hosgoren, M. (1994). Türkiye'nin gölleri (in Turkish). Turkish Geographical Review29, 19–51. https://dergipark.org.tr/tr/pub/tcd/issue/21258/228164
  • Isildar, H. T., & Ercoskun, O. Y. (2021). Sustainability and resilience in goller yoresi (lakes region). Journal of Management Theory and Practices Research, 2, 89–116.
  • Jomaa, I., Bou Kheir, R., Gitas, I. Z., & San Miguel Ayanz, J. (2003). Multitemporal unsupervised classification and NDVI to monitor land cover change in Lebanon (1987–1998). Options Méditerranéennes: Série B. Études et Recherches, 46, 43–49.
  • Julianto, F. D. (2021). Analisis sebaran potensi kekeringan dengan cloud computing platform di Kabupaten Grobogan. Jurnal Ilmiah Geomatika, 1. https://doi.org/10.31315/imagi.v1i1.4730
  • Kaplan, G., Avdan, Z. Y., Avdan, U., & Jovanovska, T. (2020). Monitoring Shared International Waters with Remote Sensing Data. Resilience, 4(1), 77–88. https://doi.org/10.32569/resilience.618176
  • Karaman, S., & Gökalp, Z. (2010). Impacts of global warming and climate change over water resources. Reserach Journal of Agricultural Sciences, 1, 59–66. https://dergipark.org.tr/tr/pub/tabad/issue/34782/385074
  • Koday, S. (1999). The salt pans of Salt Lake. International Journal of Geography and Geography Education2, 128–149.
  • Matci, D. K. (2019). A new optimization based approach to the unsupervised classification of satellite images Publication No. 175825) [Doctoral Thesis, Eskişehir Technical University]. YÖK National Thesis Center.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Meric, B. T. (2004). Water resources management and Turkey. Journal of Geological Engineering, 28, 27–38. https://dergipark.org.tr/tr/pub/jmd/issue/52390/686332
  • Minaz, M., & Kubilay, A. (2021). Natural water treatment system: the potential of applying artificial floating island technology in lakes, ponds and dam lakes in Turkey. Aquatic Research, 4, 376–394. https://doi.org/10.3153/AR21032
  • MEUCC. Ministry of Environment, Urbanization and Climate Change. MEUCC. Retrieved August 17, 2024, https://tvk.csb.gov.tr/tuz-golu-i-400
  • Oguz, H. (2017). Automated land surface temperature retrieval from Landsat 8 satellite imagery: A case study of Diyarbakır-Turkey. Turkish Journal of Forest Science, 1, 33–43. https://doi.org/10.32328/turkjforsci.296845
  • Ongun, U. (2023). Bibliometric Analysis of Tourism and Rural Development Publications with VOSviewer. Journal of Tourism Intelligence and Smartness, 6, 79–97. https://doi.org/10.58636/jtis.1335826
  • Ozcalik, H., Torun, A. T., & Bilgilioglu, S. S. (2020). Determination of the water surface and land cover change of lake Mogan using landsat satellite imagery. Turkish Journal of Remote Sensing, 2, 77–84.
  • Ozkan, E., Aydin, B., Hurma, H., & Aktas, E. (2013). Su kaynaklarının sürdürülebilir kullanımında su yönetiminin önemi (in Turkish). Turkish Journal of Scientific Reviews, 6, 150–153.
  • Ozsoy, S. (2009). Su ve yaşam: suyun toplumsal önemi (in Turkish) (Publication No. 250759) (Master’s Thesis, Ankara University]. YÖK National Thesis Center.
  • Oztas, A., Tona, A. U., & Demir, V. (2023). Determination of Burdur lake surface area change by using unsupervised classification. International Aegean Conferences, İzmir, Türkiye, 23–25. https://www.researchgate.net/publication/374449163
  • Ozvan, H., Arik, B., Yeler, O., Satır, O., & Bostan, P. (2023). Determining land change using remote sensing and geographical information systems techniques: the case of lake Karataş and its surroundings. PEYZAJ - Education, Science, Culture and Art Journal, 5(1), 30–39. https://doi.org/10.53784/peyzaj.1287192
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011
  • Pradhan, A., Uppaluri, S., Sankalp, S., Mani, S. K., & Sahoo, K. (2023). Mapping of built-up area and change detection in Bengaluru using semi-automatic classification. In AIP Conference Proceedings, 2763(1). https://doi.org/10.1063/5.0158581
  • Prasati, I. (2010). Pengkajian nilai vegetasi data MODIS dengan menerapkan beberapa algoritma pengolahan data indeks vegetasi. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 1, 20–34.
  • Ragettli, S., Herberz, T., & Siegfried, T. (2018). An unsupervised classification algorithm for multi-temporal irrigated area mapping in Central Asia. Remote Sensing, 10(11), 1823. https://doi.org/10.3390/rs10111823
  • Reis, M., Dutal, H., Abiz, B., & Bolat, N. (2016). Determination Temporal land use changes in Goksun District of Kahramanmaras City using remote sensing techniques and geographic information systems. KSU. Journal of Engineering Sciences, 19(2), 35–41. https://doi.org/10.17780/ksujes.91496
  • Sanli, F. B. (2017). Uzaktan algılama ders notu (in Turkish). Retrieved August 26, 2024, from https://avesis.yildiz.edu.tr/fbalik/dokumanlar
  • Soesanto, O., Idris, M., & Hastomo, H. D. (2022). Segmentasi vegetasi lahan basah berbasis modified-camera drone. Prosiding Seminar Nasional Lingkungan Lahan Basah, 7, 259–266.
  • Sonde, P., Balamwar, S., & Ochawar, R. S. (2020). Urban sprawl detection and analysis using unsupervised classification of high resolution image data of Jawaharlal Nehru Port Trust area in India. Remote Sensing Applications: Society and Environment, 17, 100282. https://doi.org/10.1016/j.rsase.2019.100282
  • Susam, T., Karaman, S., & Oztekin, T. (2006). Geographic information system of surface waters; Tokat province sample. Journal of Agricultural Faculty of Gaziosmanpaşa University, 1. https://hdl.handle.net/20.500.12881/11191
  • Tas, M. A., & Akpınar, E. (2021). Detection of Level Changes In Lakes in Burdur Basin With Geographical Information Systems (GIS) and Remote Sensing (RS) Eastern Geographical Review, 26, 37–54. https://doi.org/10.17295/ataunidcd.984268
  • Uygun, A., & Sen, E. (1978). Tuz Gölü Havzası ve doğal kaynakları: Tuz Gölü suyunun jeokimyası (in Turkish). Bulletin of the Geological Society of Turkey, 21, 113–120.
  • Weih Jr. R. C., & Enderle, D. I. M. (2005). Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. Journal of the Arkansas Academy of Science, 59, 65–73.
  • Yang, J. (2023). Urban expansion and the microclimate characteristics evolution of Lhasa. Highlights in Science, Engineering and Technology, 59, 85–90. https://doi.org/10.54097/hset.v59i.10064
  • Yeler, O., Elipek, B. C., & Aydin, G. B. (2023). Investigation of Temporal Change in Morphology of Mert Lake (Igneada Longoz Forests National Park / Kırklareli) with GIS Support and Ecological Evaluation. Turkish Journal of Agricultural and Natural Sciences, 10(4), 876–886. https://doi.org/10.30910/turkjans.1298920
  • Yurteri, C., & Kurttas, T. (2021). Analysis of temporal changes on the surface area of the Seyfe Lake (Kırşehir) using remote sensing and GIS techniques. Gümüşhane University Journal of Science and Technology, 11, 1115–1128. https://doi.org/10.17714/gumusfenbil.848873
  • Zafar, Z., Zubair, M., Zha, Y., Fahd, S., & Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2), 216-226. https://doi.org/10.1016/j.ejrs.2024.03.003

Determination of surface area change with remote sensing: The case of Salt Lake

Year 2025, Volume: 7 Issue: 1, 11 - 22, 19.06.2025
https://doi.org/10.56130/tucbis.1679860

Abstract

Nowadays, with the advancement of technologies and development of applications, the use of Remote Sensing (RS) techniques is becoming widespread. Thanks to RS, applications such as determination of land surface areas, change analysis, protection of water resources, mapping and sustainable management have begun to be realized. RS and Geographic Information Systems (GIS) provide great advantages and convenience especially in monitoring the temporal changes in the surface areas of water/lake resources. The temporal change of the surface area of a selected water source is observed over months and years. Lakes are important water resources located in terrestrial areas. In this study, it is aimed to determine the surface area change of Salt Lake in the last decade (2014-2023) using RS technique. The determined study area was obtained from Landsat 8 OLI_TIRS satellite images, especially in the summer months (7th and 8th months). Iterative Self-Organized Data Analysis Technique (ISODATA) was preferred as the method for unsupervised classification. Due to the low cloudiness, the images were generally obtained in August. From these images, vegetation/water area was analyzed using NDVI (Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index) and drought and wetlands in the region were monitored. According to the NDVI results, the highest value was determined as 0.73 in 2022 and the lowest value was determined as 0.59 in 2017. For the NDWI index in 2022, these values were calculated as 0.66 and -0.98, respectively. The average surface area of the Salt Lake in the last decade was found to be 999,464 km², and the changes between the years were compared with each other.

References

  • Afshinfar, A., Vahidi, S., Hatamzadeh, V., & Nouri, P. (2023). RS-based assessment: Spatial-temporal changes in water basins of Tar and Havir Lakes. International Journal of Environment and Climate Change, 13(5), 159–178. https://doi.org/10.9734/ijecc/2023/v13i51757
  • Agarwal, N., & Tiwary, A. K. (2023). Change detection of Eastern Industrial Area of Jaipur city. In AIP Conference Proceedings, 2558(1) 020038. https://doi.org/10.1063/5.0120056
  • Ak, E., & Erdogan, M. A. (2022). Determining landscape irrigation need and sufficiency using remote sensing in the case of Hatay Mustafa Kemal University Campus. VIII. Uzaktan Algılama-CBS Sempozyumu (in Turkish), Ankara, Türkiye. https://doi.org/10.15659/uzalcbs2022.13025
  • Akin, B. (2019). Drought analysis in Tuz Lake Basin. Ulusal Çevre Bilimleri Araştırma Dergisi (in Turkish), 2, 44–56.
  • Akin, M., & Akin, G. (2007). Importance of water, water potential in Turkey, Water Basins and water pollution. Ankara University Journal of the Faculty of Languages and History-Geography, 47, 105–118.
  • Aksungur, N., & Firidin, S. (2008). Su kaynaklarının kullanımı ve sürdürülebilirlik (in Turkish). Aquaculture Studies, 2, 9–11.
  • Akuzum, T., Cakmak, B., & Gökalp, Z. (2010). Evaluation of water resources management in Turkey. Reserach Journal of Agricultural Sciences, 1, 67–74.
  • Aliyazicioglu, P. (2019). Determination of plant pattern by controlled classification method on satellite images (Publication No. 606151) (Master’s Thesis, Bursa Uludağ University]. YÖK National Thesis Center.
  • Arifin, S., Manula, J., Kartika, T., & Yulianto, F. (2022). Monitoring methods of coal mine exploitation and reclamation using Sentinel-2 data. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 17(2), 123-133.
  • Arslan, E. (2022). Bibliometric mapping in social sciences research using VOSviewer and an implementation. Anadolu University Journal of Social Sciences, 22, 33–56. https://doi.org/10.18037/ausbd.1227291
  • Bagdatli, M., Cüneyt, A., Istanbulluoglu, A., & Bayar, A. N. (2014). Determined soil and water resources potential using geographic information systems (GIS): Application of Tekirdag - Cerkezkoy Province. Afyon Kocatepe University Journal of Science and Engineering, 14, 17–25. https://doi.org/10.5578/fmbd.6760
  • Basar, U. G. (2008). Evaluation of urban heat island in İstanbul trough remote sensing techniques Publication No. 371090) (Master’s Thesis, İstanbul Technical University]. YÖK National Thesis Center.
  • Caf, D. (2019). A case study: detection of agricultural products by remote sensing. Journal of Agriculture, 2, 80–91.
  • Cengiz, T. M. (2005). Hydroctimatological analysis of Turkish lake levels (Publication No. 175825) [Doctoral Thesis, Istanbul Technical University]. YÖK National Thesis Center.
  • Chasia, S., Herrnegger, M., Juma, B., Kimuyu, J., Sitoki, L., & Olang, L. (2023). Analysis of land-cover changes in the Transboundary Sio-Malaba-Malakisi River Basin of East Africa: Towards identifying potential land-use transition regimes. African Geographical Review, 42, 170–186. https://doi.org/10.1080/19376812.2021.2007143
  • Ciftci, N., Kutlu, İ., Sahin, M., & Yilmaz, A. M. (2003). Water sources using in Konya Plain. Selçuk Journal of Agriculture and Food Sciences, 17, 36–40.
  • Cuce, H., Kalıpcı, E., Tas, B., & Yılmaz, M. (2023). Evaluation of the impacts on water quality from meteorological changes due to differences in altitude by GIS: A comparison for two morphologically different lakes. The Black Sea Journal of Sciences, 10, 1–26. https://doi.org/10.31466/kfbd.649297
  • Dirik, D., Eryilmaz, İ., & Erhan, T. (2023). A bibliometric analysis using VOSviewer of publications on post-truth. Sosyal Mucit Academic Review, 4, 164–188. https://doi.org/10.54733/smar.1271369
  • Dogan, Y. (2019). Discrimination and classification of vegetation species with multi-spectral camera by using unmanned aerial vehicles (Publication No. 572478) (Master’s Thesis, Konya Technical Uludağ University]. YÖK National Thesis Center.
  • Dorak, S., Asik, B. B., & Ozsoy, G. (2019). The Importance of Water Quality and Water Pollution in Agriculture: Case of Nilüfer Creek in Bursa. Journal of Agricultural Faculty of Bursa Uludag University, 33, 155–166.
  • Earthexplorer. (2024). Earthexplorer. Retrieved August 26, 2024, https://earthexplorer.usgs.gov/
  • Ekercin, S. (2007). Multitemporal change detection on the Salt Lake and surroundings by integrating remote sensing and geographic information systems (Publication No. 216815) [Doctoral Thesis, Istanbul Technical University]. YÖK National Thesis Center.
  • EOS. (2024). EOS Data Analytics. Retrieved August 26, 2024, from https://eos.com/make-an-analysis/ndwi/
  • ESA. (2009). ESA Advanced training course on land remote sensing: Image classification. ESA. Retrieved August 26, 2024, from https://eo4society.esa.int/resources/10th-advanced-land-2021/
  • Firmansyah, A., Hamzah, H., & Achmad, E. (2022). Pemodelan penginderaan jauh untuk estimasi simpanan karbon di Blok 1 PT Alam Bukit Tigapuluh. Journal of Science and Applicative Technology, 6, 99–108. https://doi.org/10.35472/jsat.v6i2.964
  • Farhan, M., Wu, T., Amin, M., Tariq, A., Guluzade, R., & Alzahrani, H. (2024). Monitoring and prediction of the LULC change dynamics using time series remote sensing data with Google Earth Engine. Physics and Chemistry of the Earth, Parts A/B/C, 136, 103689. https://doi.org/10.1016/j.pce.2024.103689
  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Garajeh, K. M., Haji, F., Tohidfar, M., Sadeqi, A., Ahmadi, R., & Kariminejad, N. (2024). Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine. Scientific reports, 14(1), 5469. https://doi.org/10.1038/s41598-024-56160-9
  • Hosgoren, M. (1994). Türkiye'nin gölleri (in Turkish). Turkish Geographical Review29, 19–51. https://dergipark.org.tr/tr/pub/tcd/issue/21258/228164
  • Isildar, H. T., & Ercoskun, O. Y. (2021). Sustainability and resilience in goller yoresi (lakes region). Journal of Management Theory and Practices Research, 2, 89–116.
  • Jomaa, I., Bou Kheir, R., Gitas, I. Z., & San Miguel Ayanz, J. (2003). Multitemporal unsupervised classification and NDVI to monitor land cover change in Lebanon (1987–1998). Options Méditerranéennes: Série B. Études et Recherches, 46, 43–49.
  • Julianto, F. D. (2021). Analisis sebaran potensi kekeringan dengan cloud computing platform di Kabupaten Grobogan. Jurnal Ilmiah Geomatika, 1. https://doi.org/10.31315/imagi.v1i1.4730
  • Kaplan, G., Avdan, Z. Y., Avdan, U., & Jovanovska, T. (2020). Monitoring Shared International Waters with Remote Sensing Data. Resilience, 4(1), 77–88. https://doi.org/10.32569/resilience.618176
  • Karaman, S., & Gökalp, Z. (2010). Impacts of global warming and climate change over water resources. Reserach Journal of Agricultural Sciences, 1, 59–66. https://dergipark.org.tr/tr/pub/tabad/issue/34782/385074
  • Koday, S. (1999). The salt pans of Salt Lake. International Journal of Geography and Geography Education2, 128–149.
  • Matci, D. K. (2019). A new optimization based approach to the unsupervised classification of satellite images Publication No. 175825) [Doctoral Thesis, Eskişehir Technical University]. YÖK National Thesis Center.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  • Meric, B. T. (2004). Water resources management and Turkey. Journal of Geological Engineering, 28, 27–38. https://dergipark.org.tr/tr/pub/jmd/issue/52390/686332
  • Minaz, M., & Kubilay, A. (2021). Natural water treatment system: the potential of applying artificial floating island technology in lakes, ponds and dam lakes in Turkey. Aquatic Research, 4, 376–394. https://doi.org/10.3153/AR21032
  • MEUCC. Ministry of Environment, Urbanization and Climate Change. MEUCC. Retrieved August 17, 2024, https://tvk.csb.gov.tr/tuz-golu-i-400
  • Oguz, H. (2017). Automated land surface temperature retrieval from Landsat 8 satellite imagery: A case study of Diyarbakır-Turkey. Turkish Journal of Forest Science, 1, 33–43. https://doi.org/10.32328/turkjforsci.296845
  • Ongun, U. (2023). Bibliometric Analysis of Tourism and Rural Development Publications with VOSviewer. Journal of Tourism Intelligence and Smartness, 6, 79–97. https://doi.org/10.58636/jtis.1335826
  • Ozcalik, H., Torun, A. T., & Bilgilioglu, S. S. (2020). Determination of the water surface and land cover change of lake Mogan using landsat satellite imagery. Turkish Journal of Remote Sensing, 2, 77–84.
  • Ozkan, E., Aydin, B., Hurma, H., & Aktas, E. (2013). Su kaynaklarının sürdürülebilir kullanımında su yönetiminin önemi (in Turkish). Turkish Journal of Scientific Reviews, 6, 150–153.
  • Ozsoy, S. (2009). Su ve yaşam: suyun toplumsal önemi (in Turkish) (Publication No. 250759) (Master’s Thesis, Ankara University]. YÖK National Thesis Center.
  • Oztas, A., Tona, A. U., & Demir, V. (2023). Determination of Burdur lake surface area change by using unsupervised classification. International Aegean Conferences, İzmir, Türkiye, 23–25. https://www.researchgate.net/publication/374449163
  • Ozvan, H., Arik, B., Yeler, O., Satır, O., & Bostan, P. (2023). Determining land change using remote sensing and geographical information systems techniques: the case of lake Karataş and its surroundings. PEYZAJ - Education, Science, Culture and Art Journal, 5(1), 30–39. https://doi.org/10.53784/peyzaj.1287192
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011
  • Pradhan, A., Uppaluri, S., Sankalp, S., Mani, S. K., & Sahoo, K. (2023). Mapping of built-up area and change detection in Bengaluru using semi-automatic classification. In AIP Conference Proceedings, 2763(1). https://doi.org/10.1063/5.0158581
  • Prasati, I. (2010). Pengkajian nilai vegetasi data MODIS dengan menerapkan beberapa algoritma pengolahan data indeks vegetasi. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 1, 20–34.
  • Ragettli, S., Herberz, T., & Siegfried, T. (2018). An unsupervised classification algorithm for multi-temporal irrigated area mapping in Central Asia. Remote Sensing, 10(11), 1823. https://doi.org/10.3390/rs10111823
  • Reis, M., Dutal, H., Abiz, B., & Bolat, N. (2016). Determination Temporal land use changes in Goksun District of Kahramanmaras City using remote sensing techniques and geographic information systems. KSU. Journal of Engineering Sciences, 19(2), 35–41. https://doi.org/10.17780/ksujes.91496
  • Sanli, F. B. (2017). Uzaktan algılama ders notu (in Turkish). Retrieved August 26, 2024, from https://avesis.yildiz.edu.tr/fbalik/dokumanlar
  • Soesanto, O., Idris, M., & Hastomo, H. D. (2022). Segmentasi vegetasi lahan basah berbasis modified-camera drone. Prosiding Seminar Nasional Lingkungan Lahan Basah, 7, 259–266.
  • Sonde, P., Balamwar, S., & Ochawar, R. S. (2020). Urban sprawl detection and analysis using unsupervised classification of high resolution image data of Jawaharlal Nehru Port Trust area in India. Remote Sensing Applications: Society and Environment, 17, 100282. https://doi.org/10.1016/j.rsase.2019.100282
  • Susam, T., Karaman, S., & Oztekin, T. (2006). Geographic information system of surface waters; Tokat province sample. Journal of Agricultural Faculty of Gaziosmanpaşa University, 1. https://hdl.handle.net/20.500.12881/11191
  • Tas, M. A., & Akpınar, E. (2021). Detection of Level Changes In Lakes in Burdur Basin With Geographical Information Systems (GIS) and Remote Sensing (RS) Eastern Geographical Review, 26, 37–54. https://doi.org/10.17295/ataunidcd.984268
  • Uygun, A., & Sen, E. (1978). Tuz Gölü Havzası ve doğal kaynakları: Tuz Gölü suyunun jeokimyası (in Turkish). Bulletin of the Geological Society of Turkey, 21, 113–120.
  • Weih Jr. R. C., & Enderle, D. I. M. (2005). Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. Journal of the Arkansas Academy of Science, 59, 65–73.
  • Yang, J. (2023). Urban expansion and the microclimate characteristics evolution of Lhasa. Highlights in Science, Engineering and Technology, 59, 85–90. https://doi.org/10.54097/hset.v59i.10064
  • Yeler, O., Elipek, B. C., & Aydin, G. B. (2023). Investigation of Temporal Change in Morphology of Mert Lake (Igneada Longoz Forests National Park / Kırklareli) with GIS Support and Ecological Evaluation. Turkish Journal of Agricultural and Natural Sciences, 10(4), 876–886. https://doi.org/10.30910/turkjans.1298920
  • Yurteri, C., & Kurttas, T. (2021). Analysis of temporal changes on the surface area of the Seyfe Lake (Kırşehir) using remote sensing and GIS techniques. Gümüşhane University Journal of Science and Technology, 11, 1115–1128. https://doi.org/10.17714/gumusfenbil.848873
  • Zafar, Z., Zubair, M., Zha, Y., Fahd, S., & Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences, 27(2), 216-226. https://doi.org/10.1016/j.ejrs.2024.03.003
There are 63 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Geographical Information Systems (GIS) in Planning
Journal Section Research Article
Authors

Nezih Furkan Erbaş 0000-0002-5888-4916

Abdullah Varlık 0000-0003-2072-3313

Early Pub Date June 19, 2025
Publication Date June 19, 2025
Submission Date April 19, 2025
Acceptance Date May 19, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Erbaş, N. F., & Varlık, A. (2025). Determination of surface area change with remote sensing: The case of Salt Lake. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 7(1), 11-22. https://doi.org/10.56130/tucbis.1679860