Research Article
BibTex RIS Cite

Design and walking analysis of proposed four-legged glass cleaning robot

Year 2023, , 82 - 91, 15.04.2023
https://doi.org/10.31127/tuje.1011320

Abstract

In this study, a legged and wheeled robot model was proposed for cleaning the glass of greenhouses. The robot has four wheels and four legs, each with three degrees of freedom (DOF). The design, kinematic analysis and simulation of the robot was carried out. Glass greenhouses are created by placing glass sheets on T-shaped iron bars arranged in parallel at certain intervals. The robot performs the glass cleaning task by performing two different movements on greenhouse roof. As a first movement, the robot moves like a train moving on the rail on iron bars with wheels, cleaning the glass as it travels. After cleaning the glasses placed between two iron bars along a column, as second movement, the robot passes the next column using legs. These two movements continue until the entire roof of the greenhouse is cleaned. Kinematic analysis of this robot, which is designed with mechanical properties that can make these movements, has been made. Walking simulation of the robot was carried out according to the kinematic analysis. The simulation results showed that this proposed robot can be used to clean glass on the greenhouse roof.  

References

  • He, B., Cao, X., & Gu, Z. (2020). Kinematics of underactuated robotics for product carbon footprint. Journal of Cleaner Production, 257, 120491.
  • Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., & Su, H. (2020). Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing, 410, 342-353.
  • Li, J., Wang, J., Wang, S., Peng, H., Wang, B., Qi, W., Zhang, L., & Su, H., (2020). Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assembly Automation, 40, 675–687.
  • RunBin, C., YangZheng, C., Lin, L., Jian, W., & Xu, M. H. (2013). Inverse kinematics of a new quadruped robot control method. International Journal of advanced robotic systems, 10(1), 46.
  • Shim, H., Yoo, S. Y., Kang, H., & Jun, B. H. (2016). Development of arm and leg for seabed walking robot CRABSTER200. Ocean Engineering, 116, 55-67.
  • Wang, Z., Ding, X., Rovetta, A., & Giusti, A. (2011). Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics, 21(7), 1133-1146.
  • Yıldırım, Ş., & Arslan, E. (2019). A Comparison of six legged ODE (open dynamics engine) based gait control algorithm and standard walking gaits. Avrupa Bilim ve Teknoloji Dergisi, 242-255.
  • Chen, J., Qiang, H., Wu, J., Xu, G., & Wang, Z. (2021). Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform. Computers and Electronics in Agriculture, 180, 105911.
  • Tian, Y., Zhang, D., Yao, Y. A., Kong, X., & Li, Y. (2017). A reconfigurable multi-mode mobile parallel robot. Mechanism and Machine Theory, 111, 39-65.
  • Ayyıldız, M., & Çetinkaya, K. (2016). Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Computing and Applications, 27(4), 825-836.
  • Deng, H., Xin, G., Zhong, G., & Mistry, M. (2018). Object carrying of hexapod robots with integrated mechanism of leg and arm. Robotics and Computer-Integrated Manufacturing, 54, 145-155.
  • Ghergan, O. C., Țucu, D., Iusco, A., Drăghicescu, D., & Merce, R. M. B. (2019). Small greenhouse robotized solutions: state of the art and future perspectives. In Proceedings of the 47th International Symposium, Actual Tasks on Agricultural Engineering, 5-7 March 2019, Opatija, Croatia (pp. 267-276). University of Zagreb, Faculty of Agriculture.
  • Jia, B., Zhu, A., Yang, S. X., & Mittal, G. S. (2009, December). Integrated gripper and cutter in a mobile robotic system for harvesting greenhouse products. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1778-1783). IEEE.
  • Roshanianfard, A., & Noguchi, N. (2020). Pumpkin harvesting robotic end-effector. Computers and Electronics in Agriculture, 174, 105503.
  • Ling, X., Zhao, Y., Gong, L., Liu, C., & Wang, T. (2019). Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics and Autonomous Systems, 114, 134-143.
  • Martínez, D., Alenya, G., & Torras, C. (2015). Planning robot manipulation to clean planar surfaces. Engineering Applications of Artificial Intelligence, 39, 23-32.
  • Hong, J., Yoo, S., Joo, I., Kim, J., Kim, H. S., & Seo, T. (2019). Optimal parameter design of a cleaning device for vertical glass surfaces. International Journal of Precision Engineering and Manufacturing, 20(2), 233-241.
  • Sun, D., Zhu, J., Lai, C., & Tso, S. K. (2004). A visual sensing application to a climbing cleaning robot on the glass surface. Mechatronics, 14(10), 1089-1104.
  • Antonelli, M. G., Zobel, P. B., De Marcellis, A., & Palange, E. (2020). Autonomous robot for cleaning photovoltaic panels in desert zones. Mechatronics, 68, 102372.
  • Li, T., Chen, D., Shi, G., Wei, M., Zhang, Y., & Chang, J. (2019). Analysis and suggestions of greenhouse cleaning machine in China and abroad. In MATEC Web of Conferences (Vol. 272, p. 01051). EDP Sciences.
  • Seemuang, N. (2017, April). A cleaning robot for greenhouse roofs. In 2017 2nd international conference on control and robotics engineering (ICCRE) (pp. 49-52). IEEE.
  • Bakırcıoğlu, V., & Kalyoncu, M., (2019). A Literature Review on Walking Strategies of Legged Robots. Journal of Polytechnic, 0900, 961–986.
  • Çabuk, N., & Bakırcıoğlu, V. (2018). Altı serbestlik dereceli bir aydınlatma manipülatörünün yapay sinir ağları temelli ters kinematik çözümü ve benzetimi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(1), 117-125.
  • Dewi, T., Nurmaini, S., Risma, P., Oktarina, Y., & Roriz, M. (2020). Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller. International Journal of Electrical & Computer Engineering, 10(2), 1376–1386.
  • Pellicciari, M., Berselli, G., Leali, F., & Vergnano, A. (2013). A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics, 23(3), 326-334.
  • Şen, M. A., Bakırcıoğlu, V., & Kalyoncu, M. (2020). Three degree of freedom LEG desıgn for quadruped robots and fractıonal order PID (PIλDμ) based control. Konya Mühendislik Bilimleri Dergisi, 8(2), 237-247.
  • Yildirim, Ş. (2008). Design of a proposed neural network control system for trajectory controlling of walking robots. Simulation Modelling Practice and Theory, 16(3), 368-378.
  • Yildirim, Ş. (2005). A proposed hybrid recurrent neural control system for two co-operating robots. Journal of Intelligent and Robotic Systems, 42(1), 95-111.
Year 2023, , 82 - 91, 15.04.2023
https://doi.org/10.31127/tuje.1011320

Abstract

References

  • He, B., Cao, X., & Gu, Z. (2020). Kinematics of underactuated robotics for product carbon footprint. Journal of Cleaner Production, 257, 120491.
  • Li, J., Wang, J., Peng, H., Zhang, L., Hu, Y., & Su, H. (2020). Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction. Neurocomputing, 410, 342-353.
  • Li, J., Wang, J., Wang, S., Peng, H., Wang, B., Qi, W., Zhang, L., & Su, H., (2020). Parallel structure of six wheel-legged robot trajectory tracking control with heavy payload under uncertain physical interaction. Assembly Automation, 40, 675–687.
  • RunBin, C., YangZheng, C., Lin, L., Jian, W., & Xu, M. H. (2013). Inverse kinematics of a new quadruped robot control method. International Journal of advanced robotic systems, 10(1), 46.
  • Shim, H., Yoo, S. Y., Kang, H., & Jun, B. H. (2016). Development of arm and leg for seabed walking robot CRABSTER200. Ocean Engineering, 116, 55-67.
  • Wang, Z., Ding, X., Rovetta, A., & Giusti, A. (2011). Mobility analysis of the typical gait of a radial symmetrical six-legged robot. Mechatronics, 21(7), 1133-1146.
  • Yıldırım, Ş., & Arslan, E. (2019). A Comparison of six legged ODE (open dynamics engine) based gait control algorithm and standard walking gaits. Avrupa Bilim ve Teknoloji Dergisi, 242-255.
  • Chen, J., Qiang, H., Wu, J., Xu, G., & Wang, Z. (2021). Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform. Computers and Electronics in Agriculture, 180, 105911.
  • Tian, Y., Zhang, D., Yao, Y. A., Kong, X., & Li, Y. (2017). A reconfigurable multi-mode mobile parallel robot. Mechanism and Machine Theory, 111, 39-65.
  • Ayyıldız, M., & Çetinkaya, K. (2016). Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Computing and Applications, 27(4), 825-836.
  • Deng, H., Xin, G., Zhong, G., & Mistry, M. (2018). Object carrying of hexapod robots with integrated mechanism of leg and arm. Robotics and Computer-Integrated Manufacturing, 54, 145-155.
  • Ghergan, O. C., Țucu, D., Iusco, A., Drăghicescu, D., & Merce, R. M. B. (2019). Small greenhouse robotized solutions: state of the art and future perspectives. In Proceedings of the 47th International Symposium, Actual Tasks on Agricultural Engineering, 5-7 March 2019, Opatija, Croatia (pp. 267-276). University of Zagreb, Faculty of Agriculture.
  • Jia, B., Zhu, A., Yang, S. X., & Mittal, G. S. (2009, December). Integrated gripper and cutter in a mobile robotic system for harvesting greenhouse products. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1778-1783). IEEE.
  • Roshanianfard, A., & Noguchi, N. (2020). Pumpkin harvesting robotic end-effector. Computers and Electronics in Agriculture, 174, 105503.
  • Ling, X., Zhao, Y., Gong, L., Liu, C., & Wang, T. (2019). Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robotics and Autonomous Systems, 114, 134-143.
  • Martínez, D., Alenya, G., & Torras, C. (2015). Planning robot manipulation to clean planar surfaces. Engineering Applications of Artificial Intelligence, 39, 23-32.
  • Hong, J., Yoo, S., Joo, I., Kim, J., Kim, H. S., & Seo, T. (2019). Optimal parameter design of a cleaning device for vertical glass surfaces. International Journal of Precision Engineering and Manufacturing, 20(2), 233-241.
  • Sun, D., Zhu, J., Lai, C., & Tso, S. K. (2004). A visual sensing application to a climbing cleaning robot on the glass surface. Mechatronics, 14(10), 1089-1104.
  • Antonelli, M. G., Zobel, P. B., De Marcellis, A., & Palange, E. (2020). Autonomous robot for cleaning photovoltaic panels in desert zones. Mechatronics, 68, 102372.
  • Li, T., Chen, D., Shi, G., Wei, M., Zhang, Y., & Chang, J. (2019). Analysis and suggestions of greenhouse cleaning machine in China and abroad. In MATEC Web of Conferences (Vol. 272, p. 01051). EDP Sciences.
  • Seemuang, N. (2017, April). A cleaning robot for greenhouse roofs. In 2017 2nd international conference on control and robotics engineering (ICCRE) (pp. 49-52). IEEE.
  • Bakırcıoğlu, V., & Kalyoncu, M., (2019). A Literature Review on Walking Strategies of Legged Robots. Journal of Polytechnic, 0900, 961–986.
  • Çabuk, N., & Bakırcıoğlu, V. (2018). Altı serbestlik dereceli bir aydınlatma manipülatörünün yapay sinir ağları temelli ters kinematik çözümü ve benzetimi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(1), 117-125.
  • Dewi, T., Nurmaini, S., Risma, P., Oktarina, Y., & Roriz, M. (2020). Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller. International Journal of Electrical & Computer Engineering, 10(2), 1376–1386.
  • Pellicciari, M., Berselli, G., Leali, F., & Vergnano, A. (2013). A method for reducing the energy consumption of pick-and-place industrial robots. Mechatronics, 23(3), 326-334.
  • Şen, M. A., Bakırcıoğlu, V., & Kalyoncu, M. (2020). Three degree of freedom LEG desıgn for quadruped robots and fractıonal order PID (PIλDμ) based control. Konya Mühendislik Bilimleri Dergisi, 8(2), 237-247.
  • Yildirim, Ş. (2008). Design of a proposed neural network control system for trajectory controlling of walking robots. Simulation Modelling Practice and Theory, 16(3), 368-378.
  • Yildirim, Ş. (2005). A proposed hybrid recurrent neural control system for two co-operating robots. Journal of Intelligent and Robotic Systems, 42(1), 95-111.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nihat Çabuk 0000-0002-3668-7591

Publication Date April 15, 2023
Published in Issue Year 2023

Cite

APA Çabuk, N. (2023). Design and walking analysis of proposed four-legged glass cleaning robot. Turkish Journal of Engineering, 7(2), 82-91. https://doi.org/10.31127/tuje.1011320
AMA Çabuk N. Design and walking analysis of proposed four-legged glass cleaning robot. TUJE. April 2023;7(2):82-91. doi:10.31127/tuje.1011320
Chicago Çabuk, Nihat. “Design and Walking Analysis of Proposed Four-Legged Glass Cleaning Robot”. Turkish Journal of Engineering 7, no. 2 (April 2023): 82-91. https://doi.org/10.31127/tuje.1011320.
EndNote Çabuk N (April 1, 2023) Design and walking analysis of proposed four-legged glass cleaning robot. Turkish Journal of Engineering 7 2 82–91.
IEEE N. Çabuk, “Design and walking analysis of proposed four-legged glass cleaning robot”, TUJE, vol. 7, no. 2, pp. 82–91, 2023, doi: 10.31127/tuje.1011320.
ISNAD Çabuk, Nihat. “Design and Walking Analysis of Proposed Four-Legged Glass Cleaning Robot”. Turkish Journal of Engineering 7/2 (April 2023), 82-91. https://doi.org/10.31127/tuje.1011320.
JAMA Çabuk N. Design and walking analysis of proposed four-legged glass cleaning robot. TUJE. 2023;7:82–91.
MLA Çabuk, Nihat. “Design and Walking Analysis of Proposed Four-Legged Glass Cleaning Robot”. Turkish Journal of Engineering, vol. 7, no. 2, 2023, pp. 82-91, doi:10.31127/tuje.1011320.
Vancouver Çabuk N. Design and walking analysis of proposed four-legged glass cleaning robot. TUJE. 2023;7(2):82-91.
Flag Counter