The Blue Brain has a wide range of applications, which raises a number of challenging issues. Electronics may continuously monitor their surroundings depending on the real data that their Blue Brain nodes are acquiring by employing situational intelligence based on the Blue Brain environment. The Blue Brain does more than only monitor user behavior when utilizing this technology. Blue Brain is linked to a critical prerequisite for energy-efficient communication methodologies. Through the Blue Brain network, it utilizes the heterogeneity and variety of the interconnected components. Blue Brain nodes that are outsourced and have limited energy resources must utilize less energy. IoT nodes with differing energy levels are frequently dispersed across different geographic regions. The main goal of this work is to provide an energy-efficient Blue Brain framework capable of managing cluster head (CH) selection and Blue Brain node clustering. The appropriate CHs are selected, and an energetic cutoff concept is developed to guarantee that energy is shared equally among the CHs and participating Blue Brain nodes. The proposed concept envisions three different kinds of Blue Brain nodes for a Blue Brain infrastructure: expert, intermediary, and normal Blue Brain nodes. Level 1 Blue Brain nodes are regarded as normal nodes; level 2 nodes are regarded as intermediate Blue Brain nodes; and level 3 nodes are regarded as expert Blue Brain nodes. Level 1 Blue Brain nodes use the least amount of energy. The outcomes of the simulation demonstrate that the recommended strategy outperforms other existing methods.
Rajesh, D., & Kiruba, D. G. (2021). A probability based energy competent cluster based secured ch selection routing EC2SR protocol for smart dust. Peer-to-Peer Networking and Applications, 14(4), 1976-1987. https://doi.org/10.1007/s12083-021-01144-z
Škulj, G., Sluga, A., Bračun, D., & Butala, P. (2019). Energy efficient communication based on self-organisation of IoT devices for material flow tracking. CIRP annals, 68(1), 495-498.
https://doi.org/10.1016/j.cirp.2019.03.012
Huang, Y., Yu, W., Ding, E., & Garcia-Ortiz, A. (2019). EPKF: Energy efficient communication schemes based on Kalman filter for IoT. IEEE Internet of Things Journal, 6(4), 6201-6211. https://doi.org/10.1109/JIOT.2019.2900853
Kiruba, D. G., & Benitha, J. (2022). Fuzzy Based Energy Proficient Secure Clustered Routing (FEPSRC) for IOT-MWSN. Journal of Intelligent and Fuzzy Systems. 43(6),7633–7645. https://doi.org/10.3233/JIFS-212014
Alhakbani, N., Hassan, M. M., Ykhlef, M., & Fortino, G. (2019). An efficient event matching system for semantic smart data in the Internet of Things (IoT) environment. Future Generation Computer Systems, 95, 163-174.
https://doi.org/10.1016/j.future.2018.12.064
Kiruba, D. G., & Benita, J. (2022). A survey of secured cluster head: SCH based routing scheme for IOT based mobile wireless sensor network. ECS Transactions, 107(1), 16725. https://doi.org/10.1149/10701.16725ecst
Vankadara, S., & Dasari, N. (2020). Energy‐aware dynamic task offloading and collective task execution in mobile cloud computing. International Journal of Communication Systems, 33(13), e3914.
https://doi.org/10.1002/dac.3914
Kiruba, G. (2022). A comparative study on energy efficient secured clustered approaches for IOT based MWSN. Suranaree Journal of Science & Technology, 29(4), 010151
Mitton, N., Costa, L. H. M., Krishnamachari, B., Pecorella, T., Tahiliani, M., & Puech, N. (2020). Green data collection and processing in smart cities. Annals of Telecommunications, 75, 269-270.
https://doi.org/10.1007/s12243-020-00773-4
Kiruba, G. B. (2021). Energy capable clustering method for extend the duration of IoT based mobile wireless sensor network with remote nodes. Energy Harvesting and Systems, 8(1), 55-61.
https://doi.org/10.1515/ehs-2021-0006
Rajab, A. D. (2022). Energy-Efficient Static Data Collector-based Scheme in Smart Cities. Computers, Materials & Continua, 72, 2077-2092. https://doi.org/10.32604/cmc.2022.025736
Al-Kaseem, B. R., Taha, Z. K., Abdulmajeed, S. W., & Al-Raweshidy, H. S. (2021). Optimized energy–efficient path planning strategy in WSN with multiple mobile sinks. IEEE Access, 9, 82833-82847.
https://doi.org/10.1109/ACCESS.2021.3087086
Justus, J. J. & Thirunavukkarasan, M., Dhayalini, K., Visalaxi, G., Khelifi, A., Elhoseny, M. (2022). Type ii fuzzy logic based cluster head selection for wireless sensor network. Computers, Materials & Continua, 70(1), 801–816.
https://doi.org/10.32604/cmc.2022.019122
Xie, Q., Li, K., Tan, X., Han, L., Tang, W., & Hu, B. (2021). A secure and privacy-preserving authentication protocol for wireless sensor networks in smart city. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1-17. https://doi.org/10.1186/s13638-021-02000-7
Sivaram, M., Porkodi, V., Mohammed, A. S., & Karuppusamy, S. A. (2021). Improving Energy Efficiency in Internet of Things using Artificial Bee Colony Algorithm. Recent Patents on Engineering, 15(2), 161-168.
https://doi.org/10.2174/1872212114999200616164642
Gupta, P., Tripathi, S., & Singh, S. (2021). RDA-BWO: hybrid energy efficient data transfer and mobile sink location prediction in heterogeneous WSN. Wireless Networks, 27, 4421-4440.
https://doi.org/10.1007/s11276-021-02678-z
Kamarei, M., Patooghy, A., Shahsavari, Z., & Salehi, M. J. (2020). Lifetime expansion in WSNs using mobile data collector: A learning automata approach. Journal of King Saud University-Computer and Information Sciences, 32(1), 65-72. https://doi.org/10.1016/j.jksuci.2018.03.006
Osamy, W., Khedr, A. M., El-Sawy, A. A., Salim, A., & Vijayan, D. (2021). IPDCA: intelligent proficient data collection approach for IoT-enabled wireless sensor networks in smart environments. Electronics, 10(9), 997. https://doi.org/10.3390/electronics10090997
Dande, B., Chen, S. Y., Keh, H. C., Yang, S. J., & Roy, D. S. (2021). Coverage-aware recharging scheduling using mobile charger in wireless sensor networks. IEEE Access, 9, 87318-87331. https://doi.org/10.1109/ACCESS.2021.3088524
Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2020). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Systems Journal, 15(1), 27-36.
https://do.org/10.1109/JSYST.2020.2968968
Choi, H. H., & Lee, K. (2021). Cooperative wireless power transfer for lifetime maximization in wireless multihop networks. IEEE Transactions on Vehicular Technology, 70(4), 3984-3989.
https://doi.org/10.1109/TVT.2021.3068345
Rajesh, D., & Kiruba, D. G. (2021). A probability based energy competent cluster based secured ch selection routing EC2SR protocol for smart dust. Peer-to-Peer Networking and Applications, 14(4), 1976-1987. https://doi.org/10.1007/s12083-021-01144-z
Škulj, G., Sluga, A., Bračun, D., & Butala, P. (2019). Energy efficient communication based on self-organisation of IoT devices for material flow tracking. CIRP annals, 68(1), 495-498.
https://doi.org/10.1016/j.cirp.2019.03.012
Huang, Y., Yu, W., Ding, E., & Garcia-Ortiz, A. (2019). EPKF: Energy efficient communication schemes based on Kalman filter for IoT. IEEE Internet of Things Journal, 6(4), 6201-6211. https://doi.org/10.1109/JIOT.2019.2900853
Kiruba, D. G., & Benitha, J. (2022). Fuzzy Based Energy Proficient Secure Clustered Routing (FEPSRC) for IOT-MWSN. Journal of Intelligent and Fuzzy Systems. 43(6),7633–7645. https://doi.org/10.3233/JIFS-212014
Alhakbani, N., Hassan, M. M., Ykhlef, M., & Fortino, G. (2019). An efficient event matching system for semantic smart data in the Internet of Things (IoT) environment. Future Generation Computer Systems, 95, 163-174.
https://doi.org/10.1016/j.future.2018.12.064
Kiruba, D. G., & Benita, J. (2022). A survey of secured cluster head: SCH based routing scheme for IOT based mobile wireless sensor network. ECS Transactions, 107(1), 16725. https://doi.org/10.1149/10701.16725ecst
Vankadara, S., & Dasari, N. (2020). Energy‐aware dynamic task offloading and collective task execution in mobile cloud computing. International Journal of Communication Systems, 33(13), e3914.
https://doi.org/10.1002/dac.3914
Kiruba, G. (2022). A comparative study on energy efficient secured clustered approaches for IOT based MWSN. Suranaree Journal of Science & Technology, 29(4), 010151
Mitton, N., Costa, L. H. M., Krishnamachari, B., Pecorella, T., Tahiliani, M., & Puech, N. (2020). Green data collection and processing in smart cities. Annals of Telecommunications, 75, 269-270.
https://doi.org/10.1007/s12243-020-00773-4
Kiruba, G. B. (2021). Energy capable clustering method for extend the duration of IoT based mobile wireless sensor network with remote nodes. Energy Harvesting and Systems, 8(1), 55-61.
https://doi.org/10.1515/ehs-2021-0006
Rajab, A. D. (2022). Energy-Efficient Static Data Collector-based Scheme in Smart Cities. Computers, Materials & Continua, 72, 2077-2092. https://doi.org/10.32604/cmc.2022.025736
Al-Kaseem, B. R., Taha, Z. K., Abdulmajeed, S. W., & Al-Raweshidy, H. S. (2021). Optimized energy–efficient path planning strategy in WSN with multiple mobile sinks. IEEE Access, 9, 82833-82847.
https://doi.org/10.1109/ACCESS.2021.3087086
Justus, J. J. & Thirunavukkarasan, M., Dhayalini, K., Visalaxi, G., Khelifi, A., Elhoseny, M. (2022). Type ii fuzzy logic based cluster head selection for wireless sensor network. Computers, Materials & Continua, 70(1), 801–816.
https://doi.org/10.32604/cmc.2022.019122
Xie, Q., Li, K., Tan, X., Han, L., Tang, W., & Hu, B. (2021). A secure and privacy-preserving authentication protocol for wireless sensor networks in smart city. EURASIP Journal on Wireless Communications and Networking, 2021(1), 1-17. https://doi.org/10.1186/s13638-021-02000-7
Sivaram, M., Porkodi, V., Mohammed, A. S., & Karuppusamy, S. A. (2021). Improving Energy Efficiency in Internet of Things using Artificial Bee Colony Algorithm. Recent Patents on Engineering, 15(2), 161-168.
https://doi.org/10.2174/1872212114999200616164642
Gupta, P., Tripathi, S., & Singh, S. (2021). RDA-BWO: hybrid energy efficient data transfer and mobile sink location prediction in heterogeneous WSN. Wireless Networks, 27, 4421-4440.
https://doi.org/10.1007/s11276-021-02678-z
Kamarei, M., Patooghy, A., Shahsavari, Z., & Salehi, M. J. (2020). Lifetime expansion in WSNs using mobile data collector: A learning automata approach. Journal of King Saud University-Computer and Information Sciences, 32(1), 65-72. https://doi.org/10.1016/j.jksuci.2018.03.006
Osamy, W., Khedr, A. M., El-Sawy, A. A., Salim, A., & Vijayan, D. (2021). IPDCA: intelligent proficient data collection approach for IoT-enabled wireless sensor networks in smart environments. Electronics, 10(9), 997. https://doi.org/10.3390/electronics10090997
Dande, B., Chen, S. Y., Keh, H. C., Yang, S. J., & Roy, D. S. (2021). Coverage-aware recharging scheduling using mobile charger in wireless sensor networks. IEEE Access, 9, 87318-87331. https://doi.org/10.1109/ACCESS.2021.3088524
Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2020). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Systems Journal, 15(1), 27-36.
https://do.org/10.1109/JSYST.2020.2968968
Choi, H. H., & Lee, K. (2021). Cooperative wireless power transfer for lifetime maximization in wireless multihop networks. IEEE Transactions on Vehicular Technology, 70(4), 3984-3989.
https://doi.org/10.1109/TVT.2021.3068345
Dennison, R., Dasebenezer, G. K., & Dennison, R. (2024). Energy capable protocol for heterogeneous blue brain network. Turkish Journal of Engineering, 8(1), 152-161. https://doi.org/10.31127/tuje.1346925
AMA
Dennison R, Dasebenezer GK, Dennison R. Energy capable protocol for heterogeneous blue brain network. TUJE. January 2024;8(1):152-161. doi:10.31127/tuje.1346925
Chicago
Dennison, Rajesh, Giji Kiruba Dasebenezer, and Ramesh Dennison. “Energy Capable Protocol for Heterogeneous Blue Brain Network”. Turkish Journal of Engineering 8, no. 1 (January 2024): 152-61. https://doi.org/10.31127/tuje.1346925.
EndNote
Dennison R, Dasebenezer GK, Dennison R (January 1, 2024) Energy capable protocol for heterogeneous blue brain network. Turkish Journal of Engineering 8 1 152–161.
IEEE
R. Dennison, G. K. Dasebenezer, and R. Dennison, “Energy capable protocol for heterogeneous blue brain network”, TUJE, vol. 8, no. 1, pp. 152–161, 2024, doi: 10.31127/tuje.1346925.
ISNAD
Dennison, Rajesh et al. “Energy Capable Protocol for Heterogeneous Blue Brain Network”. Turkish Journal of Engineering 8/1 (January 2024), 152-161. https://doi.org/10.31127/tuje.1346925.
JAMA
Dennison R, Dasebenezer GK, Dennison R. Energy capable protocol for heterogeneous blue brain network. TUJE. 2024;8:152–161.
MLA
Dennison, Rajesh et al. “Energy Capable Protocol for Heterogeneous Blue Brain Network”. Turkish Journal of Engineering, vol. 8, no. 1, 2024, pp. 152-61, doi:10.31127/tuje.1346925.
Vancouver
Dennison R, Dasebenezer GK, Dennison R. Energy capable protocol for heterogeneous blue brain network. TUJE. 2024;8(1):152-61.