Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 197 - 202, 01.10.2020
https://doi.org/10.31127/tuje.644025

Abstract

References

  • Amuthakkannan, P., Manikandan, V., Jappes, J. W., & Uthayakumar, M. (2013). “Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites.” Materials Physics and Mechanics, 16(2), 107-117.
  • Botev, M., Betchev, H., Bikiaris, D., & Panayiotou, C. (1999). “Mechanical properties and viscoelastic behavior of basalt fiber‐reinforced polypropylene.” Journal of Applied Polymer Science, 74(3), 523-531.
  • Bozkurt, Ö. Y., Bulut, M., & Özbek, Ö. (2016). “Effect of fibre orientations on damping and vibration characteristics of basalt epoxy composite laminates.” In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16), Prague (pp.30-31).
  • Bozkurt, Ö. Y., Erkliğ, A., & Bulut, M. (2018). “Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates.” Polymer Composites, 39(2), 467-475.
  • Colombo, C., Vergani, L. A. U. R. A., & Burman, M. (2012). “Static and fatigue characterisation of new basalt fibre reinforced composites.” Composite structures, 94(3), 1165-1174.
  • Czigány, T., Vad, J., & Pölöskei, K. (2005). “Basalt fiber as a reinforcement of polymer composites.” Periodica Polytechnica Mechanical Engineering, 49(1), 3-14.
  • Demirci, M. T., Tarakçıoğlu, N., Avcı, A., & Erkendirci, Ö. F. (2014). “Fracture toughness of filament wound BFR and GFR arc shaped specimens with Charpy impact test method.” Composites Part B: Engineering, 66, 7-14.
  • Dhar Malingam, S., Subramaniam, K., Lin Feng, N., Fadzullah, S. H. S. M., & Subramonian, S. (2019). “Mechanical properties of plain woven kenaf/glass fiber reinforced polypropylene hybrid composites.” Materials Testing, 61(11), 1095-1100.
  • Dhar Malingam, S., Jumaat, F. A., Ng, L. F., Subramaniam, K., & Ab Ghani, A. F. (2018). Tensile and impact properties of cost‐effective hybrid fiber metal laminate sandwich structures. Advances in polymer technology, 37(7), 2385-2393.
  • Elmahdy, A., & Verleysen, P. (2019). “Tensile behavior of woven basalt fiber reinforced composites at high strain rates.” Polymer Testing, 76, 207-221.
  • Flášar, O. (2018). “Experimental Investigation of CFRP Impact Toughness and Failure Modes.” Advances in Military Technology, 13(1).
  • Jamshaid H. (2017). “Basalt fiber and its applications.” J Textile Eng Fashion Technol. 1(6):254-255.
  • Lee, T. W., Lee, S., Park, S. M., & Lee, D. (2019). “Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites.” Composite Structures, 222, 110917.
  • Sharma, A. P., Khan, S. H., & Velmurugan, R. (2019). “Effect of through thickness separation of fiber orientation on low velocity impact response of thin composite laminates.” Heliyon, 5(10), e02706.
  • Sim, J., & Park, C. (2005). “Characteristics of basalt fiber as a strengthening material for concrete structures.” Composites Part B: Engineering, 36(6-7), 504-512.
  • Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S., & Shon, H. K. (2014). “Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers.” Composites Part B: Engineering, 58, 251-258.
  • Zhang, Y., Yu, C., Chu, P. K., Lv, F., Zhang, C., Ji, J., ...& Wang, H. (2012). “Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites.” Materials Chemistry and Physics, 133(2-3), 845-849.
  • Zhao, X., Wang, X., Wu, Z., Keller, T., & Vassilopoulos, A. P. (2019). “Temperature effect on fatigue behavior of basalt fiber‐reinforced polymer composites.” Polymer Composites, 40(6), 2273-2283.
  • Zhong, Y., & Joshi, S. C. (2015). “Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates.” Materials & Design (1980-2015), 65, 254-264.

LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS

Year 2020, Volume: 4 Issue: 4, 197 - 202, 01.10.2020
https://doi.org/10.31127/tuje.644025

Abstract

The current study aims to explore the effects of fiber orientation angle on the low velocity impact behaviors of the basalt fiber reinforced composite laminates. Samples with four different orientation angles (0º/90º, 15º/-75º, 30º/-60º and 45º/- 45º) fabricated by vacuum assisted resin transfer molding have being tested on the Charpy impact test machine. Furthermore, failure modes of notched/unnotched samples subjected to impact loadings in the flatwise and edgewise directions have been examined to detailly understand fracture behavior. The results showed that the fiber orientation angle has substantial effects on the energy absorption capability and impact toughness of the samples. The increment in fiber orientation angle was led to increases in impact energy and toughness, and the reduction in impact damage. The best values as 3.07 J and 34.82 kJ/m2 for impact energy and impact toughness, respectively, are obtained from the notched samples in edgewise impact loading that having (45º/-45º) fiber orientation angle. Almost all of the samples exhibited failure modes as matrix fragmentation, delamination, fiber cracking and fiber pull-out, respectively. The most destructive results were observed as laminate fracture on the samples having (0º/90º) fiber orientation angle.

References

  • Amuthakkannan, P., Manikandan, V., Jappes, J. W., & Uthayakumar, M. (2013). “Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites.” Materials Physics and Mechanics, 16(2), 107-117.
  • Botev, M., Betchev, H., Bikiaris, D., & Panayiotou, C. (1999). “Mechanical properties and viscoelastic behavior of basalt fiber‐reinforced polypropylene.” Journal of Applied Polymer Science, 74(3), 523-531.
  • Bozkurt, Ö. Y., Bulut, M., & Özbek, Ö. (2016). “Effect of fibre orientations on damping and vibration characteristics of basalt epoxy composite laminates.” In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering (CSEE’16), Prague (pp.30-31).
  • Bozkurt, Ö. Y., Erkliğ, A., & Bulut, M. (2018). “Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates.” Polymer Composites, 39(2), 467-475.
  • Colombo, C., Vergani, L. A. U. R. A., & Burman, M. (2012). “Static and fatigue characterisation of new basalt fibre reinforced composites.” Composite structures, 94(3), 1165-1174.
  • Czigány, T., Vad, J., & Pölöskei, K. (2005). “Basalt fiber as a reinforcement of polymer composites.” Periodica Polytechnica Mechanical Engineering, 49(1), 3-14.
  • Demirci, M. T., Tarakçıoğlu, N., Avcı, A., & Erkendirci, Ö. F. (2014). “Fracture toughness of filament wound BFR and GFR arc shaped specimens with Charpy impact test method.” Composites Part B: Engineering, 66, 7-14.
  • Dhar Malingam, S., Subramaniam, K., Lin Feng, N., Fadzullah, S. H. S. M., & Subramonian, S. (2019). “Mechanical properties of plain woven kenaf/glass fiber reinforced polypropylene hybrid composites.” Materials Testing, 61(11), 1095-1100.
  • Dhar Malingam, S., Jumaat, F. A., Ng, L. F., Subramaniam, K., & Ab Ghani, A. F. (2018). Tensile and impact properties of cost‐effective hybrid fiber metal laminate sandwich structures. Advances in polymer technology, 37(7), 2385-2393.
  • Elmahdy, A., & Verleysen, P. (2019). “Tensile behavior of woven basalt fiber reinforced composites at high strain rates.” Polymer Testing, 76, 207-221.
  • Flášar, O. (2018). “Experimental Investigation of CFRP Impact Toughness and Failure Modes.” Advances in Military Technology, 13(1).
  • Jamshaid H. (2017). “Basalt fiber and its applications.” J Textile Eng Fashion Technol. 1(6):254-255.
  • Lee, T. W., Lee, S., Park, S. M., & Lee, D. (2019). “Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites.” Composite Structures, 222, 110917.
  • Sharma, A. P., Khan, S. H., & Velmurugan, R. (2019). “Effect of through thickness separation of fiber orientation on low velocity impact response of thin composite laminates.” Heliyon, 5(10), e02706.
  • Sim, J., & Park, C. (2005). “Characteristics of basalt fiber as a strengthening material for concrete structures.” Composites Part B: Engineering, 36(6-7), 504-512.
  • Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S., & Shon, H. K. (2014). “Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers.” Composites Part B: Engineering, 58, 251-258.
  • Zhang, Y., Yu, C., Chu, P. K., Lv, F., Zhang, C., Ji, J., ...& Wang, H. (2012). “Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites.” Materials Chemistry and Physics, 133(2-3), 845-849.
  • Zhao, X., Wang, X., Wu, Z., Keller, T., & Vassilopoulos, A. P. (2019). “Temperature effect on fatigue behavior of basalt fiber‐reinforced polymer composites.” Polymer Composites, 40(6), 2273-2283.
  • Zhong, Y., & Joshi, S. C. (2015). “Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates.” Materials & Design (1980-2015), 65, 254-264.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Özkan Özbek 0000-0003-1532-4262

Ömer Yavuz Bozkurt 0000-0003-0685-8748

Ahmet Erkliğ 0000-0003-3906-3415

Publication Date October 1, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2020). LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS. Turkish Journal of Engineering, 4(4), 197-202. https://doi.org/10.31127/tuje.644025
AMA Özbek Ö, Bozkurt ÖY, Erkliğ A. LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS. TUJE. October 2020;4(4):197-202. doi:10.31127/tuje.644025
Chicago Özbek, Özkan, Ömer Yavuz Bozkurt, and Ahmet Erkliğ. “LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS”. Turkish Journal of Engineering 4, no. 4 (October 2020): 197-202. https://doi.org/10.31127/tuje.644025.
EndNote Özbek Ö, Bozkurt ÖY, Erkliğ A (October 1, 2020) LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS. Turkish Journal of Engineering 4 4 197–202.
IEEE Ö. Özbek, Ö. Y. Bozkurt, and A. Erkliğ, “LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS”, TUJE, vol. 4, no. 4, pp. 197–202, 2020, doi: 10.31127/tuje.644025.
ISNAD Özbek, Özkan et al. “LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS”. Turkish Journal of Engineering 4/4 (October 2020), 197-202. https://doi.org/10.31127/tuje.644025.
JAMA Özbek Ö, Bozkurt ÖY, Erkliğ A. LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS. TUJE. 2020;4:197–202.
MLA Özbek, Özkan et al. “LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS”. Turkish Journal of Engineering, vol. 4, no. 4, 2020, pp. 197-02, doi:10.31127/tuje.644025.
Vancouver Özbek Ö, Bozkurt ÖY, Erkliğ A. LOW VELOCITY IMPACT BEHAVIORS OF BASALT/EPOXY REINFORCED COMPOSITE LAMINATES WITH DIFFERENT FIBER ORIENTATIONS. TUJE. 2020;4(4):197-202.

Cited By










Flag Counter