Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 322 - 330, 05.10.2023
https://doi.org/10.31127/tuje.1180931

Abstract

References

  • Xie, Y., Meng, W. Y., Li, R. Z., Wang, Y. W., Qian, X., Chan, C., ... & Leung, E. L. H. (2021). Early lung cancer diagnostic biomarker discovery by machine learning methods. Translational oncology, 14(1), 100907. https://doi.org/10.1016/j.tranon.2020.100907
  • Chiu, H. Y., Chao, H. S., & Chen, Y. M. (2022). Application of artificial intelligence in lung cancer. Cancers, 14(6), 1370. https://doi.org/10.3390/cancers14061370
  • Masud, M., Sikder, N., Nahid, A. A., Bairagi, A. K., & AlZain, M. A. (2021). A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors, 21(3), 748. https://doi.org/10.3390/s21030748
  • https://www.mohw.gov.tw/cp-4650-50697-2.html
  • https://www.who.int/news-room/fact-sheets/detail/cancer
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/CAAC.21660
  • https://gco.iarc.fr/
  • https://www.who.int/news-room/fact-sheets/detail/cancer
  • Rock, C. L., Thomson, C., Gansler, T., Gapstur, S. M., McCullough, M. L., Patel, A. V., ... & Doyle, C. (2020). American Cancer Society guideline for diet and physical activity for cancer prevention. CA: a cancer journal for clinicians, 70(4), 245-271. https://doi.org/10.3322/CAAC.21591
  • Shakeel, P. M., Tolba, A., Al-Makhadmeh, Z., & Jaber, M. M. (2020). Automatic detection of lung cancer from biomedical data set using discrete AdaBoost optimized ensemble learning generalized neural networks. Neural Computing and Applications, 32, 777-790. https://doi.org/10.1007/S00521-018-03972-2/FIGURES/8
  • Bruno, F., Granata, V., Cobianchi Bellisari, F., Sgalambro, F., Tommasino, E., Palumbo, P., ... & Barile, A. (2022). Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers, 14(7), 1626. https://doi.org/10.3390/CANCERS14071626
  • Zhang, Y., Wang, R., Hu, J., Qin, X., Chen, A., & Li, X. (2022). Magnetic resonance imaging (MRI) and computed topography (CT) analysis of Schatzker type IV tibial plateau fracture revealed possible mechanisms of injury beyond varus deforming force. Injury, 53(2), 683-690. https://doi.org/10.1016/J.INJURY.2021.09.041
  • Grootjans, W., Rietbergen, D. D., & van Velden, F. H. (2022, May). Added value of respiratory gating in positron emission tomography for the clinical management of lung cancer patients. In Seminars in Nuclear Medicine. WB Saunders. https://doi.org/10.1053/J.SEMNUCLMED.2022.04.006
  • Kooli, C., & Al Muftah, H. (2022). Artificial intelligence in healthcare: a comprehensive review of its ethical concerns. Technological Sustainability, 1(2), 121-131. https://doi.org/10.1108/TECHS-12-2021-0029
  • Sun, L., Gupta, R. K., & Sharma, A. (2022). Review and potential for artificial intelligence in healthcare. International Journal of System Assurance Engineering and Management, 13(Suppl 1), 54-62. https://doi.org/10.1007/S13198-021-01221-9/FIGURES/6
  • Sanchez, P., Voisey, J. P., Xia, T., Watson, H. I., O’Neil, A. Q., & Tsaftaris, S. A. (2022). Causal machine learning for healthcare and precision medicine. Royal Society Open Science, 9(8), 220638. https://doi.org/10.1098/RSOS.220638
  • Rastogi, M., Vijarania, D., & Goel, D. (2022). Role of Machine Learning in Healthcare Sector. Neha, Role of Machine Learning in Healthcare Sector (August 20, 2022). https://doi.org/10.2139/SSRN.4195384
  • Lawson, C. E., Martí, J. M., Radivojevic, T., Jonnalagadda, S. V. R., Gentz, R., Hillson, N. J., ... & Martin, H. G. (2021). Machine learning for metabolic engineering: A review. Metabolic Engineering, 63, 34-60. https://doi.org/10.1016/J.YMBEN.2020.10.005
  • Das, S., Biswas, S., Paul, A., & Dey, A. (2018). AI Doctor: An intelligent approach for medical diagnosis. In Industry Interactive Innovations in Science, Engineering and Technology: Proceedings of the International Conference, I3SET 2016 (pp. 173-183). Springer Singapore. https://doi.org/10.1007/978-981-10-3953-9_17/COVER
  • Bukhari, S. U. K., Syed, A., Bokhari, S. K. A., Hussain, S. S., Armaghan, S. U., & Shah, S. S. H. (2020). The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning. MedRxiv, 2020-08. https://doi.org/10.1101/2020.08.15.20175760
  • Shakeel, P. M., Tolba, A., Al-Makhadmeh, Z., & Jaber, M. M. (2020). Automatic detection of lung cancer from biomedical data set using discrete AdaBoost optimized ensemble learning generalized neural networks. Neural Computing and Applications, 32, 777-790. https://doi.org/10.1007/S00521-018-03972-2/FIGURES/8
  • Das, S., Biswas, S., Paul, A., & Dey, A. (2018). AI Doctor: An intelligent approach for medical diagnosis. In Industry Interactive Innovations in Science, Engineering and Technology: Proceedings of the International Conference, I3SET 2016 (pp. 173-183). Springer Singapore. https://doi.org/10.1007/978-981-10-3953-9_17/COVER
  • Zhao, W., Yang, J., Sun, Y., Li, C., Wu, W., Jin, L., ... & Li, M. (2018). 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer research, 78(24), 6881-6889. https://doi.org/10.1158/0008-5472.CAN-18-0696
  • https://data.world/josh-nbu/lung-cancer/workspace/file?filename=survey+lung+cancer+%281%29.csv
  • Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked, 100924. https://doi.org/10.1016/J.IMU.2022.100924
  • Mohammadi, F. G., Shenavarmasouleh, F., & Arabnia, H. R. (2022). Applications of machine learning in healthcare and internet of things (IOT): a comprehensive review. arXiv preprint arXiv:2202.02868. https://doi.org/10.48550/arxiv.2202.02868
  • Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press. https://doi.org/10.1016/B978-0-12-821379-7.00003-5
  • Bellhouse, D. R. (2004). The Reverend Thomas Bayes, FRS: a biography to celebrate the tercentenary of his birth. https://doi.org/10.1214/088342304000000189
  • Itoo, F., & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology, 13, 1503-1511. https://doi.org/10.1007/s41870-020-00430-y
  • Frank, E., Trigg, L., Holmes, G., & Witten, I. H. (2000). Naive Bayes for regression. Machine Learning, 41, 5-25.
  • LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399. https://doi.org/10.1161/CIRCULATIONAHA.106.682658
  • Senan, E. M., Al-Adhaileh, M. H., Alsaade, F. W., Aldhyani, T. H., Alqarni, A. A., Alsharif, N., ... & Alzahrani, M. Y. (2021). Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/1004767
  • Aggrawal, R., & Pal, S. (2020). Sequential feature selection and machine learning algorithm-based patient’s death events prediction and diagnosis in heart disease. SN Computer Science, 1(6), 344. https://doi.org/10.1007/S42979-020-00370-1/TABLES/5
  • Ayon, S. I., Islam, M. M., & Hossain, M. R. (2022). Coronary artery heart disease prediction: a comparative study of computational intelligence techniques. IETE Journal of Research, 68(4), 2488-2507. https://doi.org/10.1080/03772063.2020.1713916
  • Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792. https://doi.org/10.1890/07-0539.1
  • Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13(1), 1063-1095.
  • Lingwal, S., Bhatia, K. K., & Tomer, M. S. (2021). Image-based wheat grain classification using convolutional neural network. Multimedia Tools and Applications, 80,35441–35465. https://doi.org/10.1007/s11042-020-10174-3
  • Biau, G., Cadre, B., & Rouvìère, L. (2019). Accelerated gradient boosting. Machine learning, 108, 971-992. https://doi.org/10.1007/S10994-019-05787-1/TABLES/5
  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
  • Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. https://doi.org/10.3389/FNBOT.2013.00021/XML/NLM
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press. https://doi.org/10.1017/CBO9780511801389
  • Auria, L., & Moro, R. A. (2008). Support vector machines (SVM) as a technique for solvency analysis. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.1424949
  • Rivas-Perea, P., Cota-Ruiz, J., Chaparro, D. G., Venzor, J. A. P., Carreón, A. Q., & Rosiles, J. G. (2012). Support vector machines for regression: a succinct review of large-scale and linear programming formulations. International Journal of Intelligence Science, 03(01), 5–14. https://doi.org/10.4236/ijis.2013.31002
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
  • https://devopedia.org/confusion-matrix
  • Isabella, S. J., Srinivasan, S., & Suseendran, G. (2020). An efficient study of fraud detection system using Ml techniques. Intelligent Computing and Innovation on Data Science, 59-67. https://doi.org/10.1007/978-981-15-3284-9_8
  • Taha, A. A., & Malebary, S. J. (2020). An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE Access, 8, 25579-25587. https://doi.org/10.1109/ACCESS.2020.2971354
  • Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017, October). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. https://doi.org/10.1109/ICCNI.2017.8123782
  • Dirik, M., & Gül, M. (2021). Dynamic optimal ANFIS parameters tuning with particle swarm optimization. Avrupa Bilim ve Teknoloji Dergisi, (28), 1083-1092. https://doi.org/10.31590/ejosat.1012888
  • Lin, T. H., & Jiang, J. R. (2021). Credit card fraud detection with autoencoder and probabilistic random forest. Mathematics, 9(21), 2683. https://doi.org/10.3390/math9212683
  • Xie, Y., Zhu, C., Zhou, W., Li, Z., Liu, X., & Tu, M. (2018). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, 160, 182-193. https://doi.org/10.1016/j.petrol.2017.10.028

Machine learning-based lung cancer diagnosis

Year 2023, Volume: 7 Issue: 4, 322 - 330, 05.10.2023
https://doi.org/10.31127/tuje.1180931

Abstract

Cancer is one of the leading health problems, occurring in various organs and tissues of the body, and its incidence is increasing worldwide. Lung cancer is one of the deadliest types of cancer. Due to its worldwide prevalence, increasing number of cases, and deadly consequences, early detection of lung cancer, as with all other cancers, greatly increases the chances of survival. As with all other diseases, the diagnosis of cancer is only possible after the appearance of various symptoms and an examination by specialists. Known symptoms of lung cancer are shortness of breath, coughing, wheezing, jaundice in the fingers, chest pain, and difficulty swallowing. The diagnosis is made by an expert on site based on these symptoms and additional tests. The aim of this study is to detect the disease at an earlier stage based on the symptoms present, to assess more cases with less time and cost, and to achieve results in new situations that are as successful or even faster than those of human experts by deriving them from existing data using different algorithms. The aim is to develop an automated model that can detect early-stage lung cancer based on machine learning methods. The developed model includes nine different machine learning algorithms (NB, LR, DT, RF, GB, and SVM). The success of the classification algorithms used was evaluated using the metrics of accuracy, sensitivity, and precision calculated using the parameters of the confusion matrix. The results obtained show that the proposed model can detect cancer with a maximum accuracy of 91%.

References

  • Xie, Y., Meng, W. Y., Li, R. Z., Wang, Y. W., Qian, X., Chan, C., ... & Leung, E. L. H. (2021). Early lung cancer diagnostic biomarker discovery by machine learning methods. Translational oncology, 14(1), 100907. https://doi.org/10.1016/j.tranon.2020.100907
  • Chiu, H. Y., Chao, H. S., & Chen, Y. M. (2022). Application of artificial intelligence in lung cancer. Cancers, 14(6), 1370. https://doi.org/10.3390/cancers14061370
  • Masud, M., Sikder, N., Nahid, A. A., Bairagi, A. K., & AlZain, M. A. (2021). A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors, 21(3), 748. https://doi.org/10.3390/s21030748
  • https://www.mohw.gov.tw/cp-4650-50697-2.html
  • https://www.who.int/news-room/fact-sheets/detail/cancer
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/CAAC.21660
  • https://gco.iarc.fr/
  • https://www.who.int/news-room/fact-sheets/detail/cancer
  • Rock, C. L., Thomson, C., Gansler, T., Gapstur, S. M., McCullough, M. L., Patel, A. V., ... & Doyle, C. (2020). American Cancer Society guideline for diet and physical activity for cancer prevention. CA: a cancer journal for clinicians, 70(4), 245-271. https://doi.org/10.3322/CAAC.21591
  • Shakeel, P. M., Tolba, A., Al-Makhadmeh, Z., & Jaber, M. M. (2020). Automatic detection of lung cancer from biomedical data set using discrete AdaBoost optimized ensemble learning generalized neural networks. Neural Computing and Applications, 32, 777-790. https://doi.org/10.1007/S00521-018-03972-2/FIGURES/8
  • Bruno, F., Granata, V., Cobianchi Bellisari, F., Sgalambro, F., Tommasino, E., Palumbo, P., ... & Barile, A. (2022). Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers, 14(7), 1626. https://doi.org/10.3390/CANCERS14071626
  • Zhang, Y., Wang, R., Hu, J., Qin, X., Chen, A., & Li, X. (2022). Magnetic resonance imaging (MRI) and computed topography (CT) analysis of Schatzker type IV tibial plateau fracture revealed possible mechanisms of injury beyond varus deforming force. Injury, 53(2), 683-690. https://doi.org/10.1016/J.INJURY.2021.09.041
  • Grootjans, W., Rietbergen, D. D., & van Velden, F. H. (2022, May). Added value of respiratory gating in positron emission tomography for the clinical management of lung cancer patients. In Seminars in Nuclear Medicine. WB Saunders. https://doi.org/10.1053/J.SEMNUCLMED.2022.04.006
  • Kooli, C., & Al Muftah, H. (2022). Artificial intelligence in healthcare: a comprehensive review of its ethical concerns. Technological Sustainability, 1(2), 121-131. https://doi.org/10.1108/TECHS-12-2021-0029
  • Sun, L., Gupta, R. K., & Sharma, A. (2022). Review and potential for artificial intelligence in healthcare. International Journal of System Assurance Engineering and Management, 13(Suppl 1), 54-62. https://doi.org/10.1007/S13198-021-01221-9/FIGURES/6
  • Sanchez, P., Voisey, J. P., Xia, T., Watson, H. I., O’Neil, A. Q., & Tsaftaris, S. A. (2022). Causal machine learning for healthcare and precision medicine. Royal Society Open Science, 9(8), 220638. https://doi.org/10.1098/RSOS.220638
  • Rastogi, M., Vijarania, D., & Goel, D. (2022). Role of Machine Learning in Healthcare Sector. Neha, Role of Machine Learning in Healthcare Sector (August 20, 2022). https://doi.org/10.2139/SSRN.4195384
  • Lawson, C. E., Martí, J. M., Radivojevic, T., Jonnalagadda, S. V. R., Gentz, R., Hillson, N. J., ... & Martin, H. G. (2021). Machine learning for metabolic engineering: A review. Metabolic Engineering, 63, 34-60. https://doi.org/10.1016/J.YMBEN.2020.10.005
  • Das, S., Biswas, S., Paul, A., & Dey, A. (2018). AI Doctor: An intelligent approach for medical diagnosis. In Industry Interactive Innovations in Science, Engineering and Technology: Proceedings of the International Conference, I3SET 2016 (pp. 173-183). Springer Singapore. https://doi.org/10.1007/978-981-10-3953-9_17/COVER
  • Bukhari, S. U. K., Syed, A., Bokhari, S. K. A., Hussain, S. S., Armaghan, S. U., & Shah, S. S. H. (2020). The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning. MedRxiv, 2020-08. https://doi.org/10.1101/2020.08.15.20175760
  • Shakeel, P. M., Tolba, A., Al-Makhadmeh, Z., & Jaber, M. M. (2020). Automatic detection of lung cancer from biomedical data set using discrete AdaBoost optimized ensemble learning generalized neural networks. Neural Computing and Applications, 32, 777-790. https://doi.org/10.1007/S00521-018-03972-2/FIGURES/8
  • Das, S., Biswas, S., Paul, A., & Dey, A. (2018). AI Doctor: An intelligent approach for medical diagnosis. In Industry Interactive Innovations in Science, Engineering and Technology: Proceedings of the International Conference, I3SET 2016 (pp. 173-183). Springer Singapore. https://doi.org/10.1007/978-981-10-3953-9_17/COVER
  • Zhao, W., Yang, J., Sun, Y., Li, C., Wu, W., Jin, L., ... & Li, M. (2018). 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. Cancer research, 78(24), 6881-6889. https://doi.org/10.1158/0008-5472.CAN-18-0696
  • https://data.world/josh-nbu/lung-cancer/workspace/file?filename=survey+lung+cancer+%281%29.csv
  • Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked, 100924. https://doi.org/10.1016/J.IMU.2022.100924
  • Mohammadi, F. G., Shenavarmasouleh, F., & Arabnia, H. R. (2022). Applications of machine learning in healthcare and internet of things (IOT): a comprehensive review. arXiv preprint arXiv:2202.02868. https://doi.org/10.48550/arxiv.2202.02868
  • Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press. https://doi.org/10.1016/B978-0-12-821379-7.00003-5
  • Bellhouse, D. R. (2004). The Reverend Thomas Bayes, FRS: a biography to celebrate the tercentenary of his birth. https://doi.org/10.1214/088342304000000189
  • Itoo, F., & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology, 13, 1503-1511. https://doi.org/10.1007/s41870-020-00430-y
  • Frank, E., Trigg, L., Holmes, G., & Witten, I. H. (2000). Naive Bayes for regression. Machine Learning, 41, 5-25.
  • LaValley, M. P. (2008). Logistic regression. Circulation, 117(18), 2395-2399. https://doi.org/10.1161/CIRCULATIONAHA.106.682658
  • Senan, E. M., Al-Adhaileh, M. H., Alsaade, F. W., Aldhyani, T. H., Alqarni, A. A., Alsharif, N., ... & Alzahrani, M. Y. (2021). Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/1004767
  • Aggrawal, R., & Pal, S. (2020). Sequential feature selection and machine learning algorithm-based patient’s death events prediction and diagnosis in heart disease. SN Computer Science, 1(6), 344. https://doi.org/10.1007/S42979-020-00370-1/TABLES/5
  • Ayon, S. I., Islam, M. M., & Hossain, M. R. (2022). Coronary artery heart disease prediction: a comparative study of computational intelligence techniques. IETE Journal of Research, 68(4), 2488-2507. https://doi.org/10.1080/03772063.2020.1713916
  • Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792. https://doi.org/10.1890/07-0539.1
  • Biau, G. (2012). Analysis of a random forests model. The Journal of Machine Learning Research, 13(1), 1063-1095.
  • Lingwal, S., Bhatia, K. K., & Tomer, M. S. (2021). Image-based wheat grain classification using convolutional neural network. Multimedia Tools and Applications, 80,35441–35465. https://doi.org/10.1007/s11042-020-10174-3
  • Biau, G., Cadre, B., & Rouvìère, L. (2019). Accelerated gradient boosting. Machine learning, 108, 971-992. https://doi.org/10.1007/S10994-019-05787-1/TABLES/5
  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
  • Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. https://doi.org/10.3389/FNBOT.2013.00021/XML/NLM
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press. https://doi.org/10.1017/CBO9780511801389
  • Auria, L., & Moro, R. A. (2008). Support vector machines (SVM) as a technique for solvency analysis. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.1424949
  • Rivas-Perea, P., Cota-Ruiz, J., Chaparro, D. G., Venzor, J. A. P., Carreón, A. Q., & Rosiles, J. G. (2012). Support vector machines for regression: a succinct review of large-scale and linear programming formulations. International Journal of Intelligence Science, 03(01), 5–14. https://doi.org/10.4236/ijis.2013.31002
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
  • https://devopedia.org/confusion-matrix
  • Isabella, S. J., Srinivasan, S., & Suseendran, G. (2020). An efficient study of fraud detection system using Ml techniques. Intelligent Computing and Innovation on Data Science, 59-67. https://doi.org/10.1007/978-981-15-3284-9_8
  • Taha, A. A., & Malebary, S. J. (2020). An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE Access, 8, 25579-25587. https://doi.org/10.1109/ACCESS.2020.2971354
  • Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017, October). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. https://doi.org/10.1109/ICCNI.2017.8123782
  • Dirik, M., & Gül, M. (2021). Dynamic optimal ANFIS parameters tuning with particle swarm optimization. Avrupa Bilim ve Teknoloji Dergisi, (28), 1083-1092. https://doi.org/10.31590/ejosat.1012888
  • Lin, T. H., & Jiang, J. R. (2021). Credit card fraud detection with autoencoder and probabilistic random forest. Mathematics, 9(21), 2683. https://doi.org/10.3390/math9212683
  • Xie, Y., Zhu, C., Zhou, W., Li, Z., Liu, X., & Tu, M. (2018). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, 160, 182-193. https://doi.org/10.1016/j.petrol.2017.10.028
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahmut Dirik 0000-0003-1718-5075

Early Pub Date June 22, 2023
Publication Date October 5, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Dirik, M. (2023). Machine learning-based lung cancer diagnosis. Turkish Journal of Engineering, 7(4), 322-330. https://doi.org/10.31127/tuje.1180931
AMA Dirik M. Machine learning-based lung cancer diagnosis. TUJE. October 2023;7(4):322-330. doi:10.31127/tuje.1180931
Chicago Dirik, Mahmut. “Machine Learning-Based Lung Cancer Diagnosis”. Turkish Journal of Engineering 7, no. 4 (October 2023): 322-30. https://doi.org/10.31127/tuje.1180931.
EndNote Dirik M (October 1, 2023) Machine learning-based lung cancer diagnosis. Turkish Journal of Engineering 7 4 322–330.
IEEE M. Dirik, “Machine learning-based lung cancer diagnosis”, TUJE, vol. 7, no. 4, pp. 322–330, 2023, doi: 10.31127/tuje.1180931.
ISNAD Dirik, Mahmut. “Machine Learning-Based Lung Cancer Diagnosis”. Turkish Journal of Engineering 7/4 (October 2023), 322-330. https://doi.org/10.31127/tuje.1180931.
JAMA Dirik M. Machine learning-based lung cancer diagnosis. TUJE. 2023;7:322–330.
MLA Dirik, Mahmut. “Machine Learning-Based Lung Cancer Diagnosis”. Turkish Journal of Engineering, vol. 7, no. 4, 2023, pp. 322-30, doi:10.31127/tuje.1180931.
Vancouver Dirik M. Machine learning-based lung cancer diagnosis. TUJE. 2023;7(4):322-30.
Flag Counter