A review on application areas and surface geometry in superhydrophobic materials
Year 2024,
Volume: 8 Issue: 1, 1 - 10, 19.01.2024
Serhat Akıncı
,
Filiz Karaomerlıoglu
,
Emre Kaygusuz
Abstract
Superhydrophobic surfaces offer many advantages beyond just being hydrophobic (water repellent) to the surface. The superhydrophobic property can be achieved by artificially creating geometric structures on the material surface. These geometric structures reduce the contact area between the liquid and the surface. The contact angle between the liquid and the surface gives rise to two conditions: hydrophobic and hydrophilic. If the contact angle between the surface and the liquid is above 90 degrees, a hydrophobic state occurs. If the angle is below 90 degrees, the surface is in a hydrophilic state. One of these two states is determined depending on the need and provides alternative solutions for many problems that currently await engineering interventions. Scientific studies in the field of superhydrophobia are increasing day by day. Interest in superhydrophobia is expected to grow further, as it offers environmentally friendly and economical solutions to ongoing challenges in various sectors. Superhydrophobic materials also offer a method of preventing icing due to their ability to prevent liquid retention on the material surface through their water repellent properties. Since the reduction of the contact area between the liquid and the material surface on superhydrophobic surfaces leads to a decrease in the friction factor, the friction of the flow on the material will also decrease. These properties of superhydrophobic materials generate interest in sectors such as aviation and marine. This study describes the properties of superhydrophobic surfaces created through various methods on materials, focusing on applications such as anti-icing and reduction of friction factor.
References
- Nosonovsky, M., & Bhushan, B. (2008). Lotus-Effect and Water-Repellent Surfaces in Nature. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, 181-197. https://doi.org/10.1007/978-3-540-78425-8_10
- Whyman, G., Bormashenko, E., & Stein, T. (2008). The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4-6), 355-359. https://doi.org/10.1016/j.cplett.2007.11.033
- Özdoğan, E., Demir, A., & Seventekin, N. (2006). Lotus etkili yüzeyler. Tekstil ve Konfeksiyon, 16(1), 287-290.
- Syms, R. R., & Wright, S. (2016). MEMS mass spectrometers: the next wave of miniaturization. Journal of Micromechanics and Microengineering, 26(2), 023001. https://doi.org/10.1088/0960-1317/26/2/023001
- Iannacci, J. (2015). Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays, 37, 62-71. https://doi.org/10.1016/j.displa.2014.08.003
- Chai, J., Zhang, K., Xue, Y., Liu, W., Chen, T., Lu, Y., & Zhao, G. (2020). Review of MEMS based Fourier transform spectrometers. Micromachines, 11(2), 214. https://doi.org/10.3390/mi11020214
- Ulkir, O., Ertugrul, I., Akkus, N., & Ozer, S. (2022). Fabrication and experimental study of micro-gripper with electrothermal actuation by stereolithography method. Journal of Materials Engineering and Performance, 31(10), 8148-8159. https://doi.org/10.1007/s11665-022-06875-5
- Farré, M., Kantiani, L. & Barceló, D. (2012). Chapter 7 - Microfluidic Devices: Biosensors. Chemical Analysis of Food: Techniques and Applications, Academic Press, 177-217. https://doi.org/10.1016/B978-0-12-384862-8.00007-8
- Branson, E. D., Singh, S., Houston, J. E., Swol, F. V. & Brinker, C. J. (2006). Superhydrophobic Surface Coatings for Microfluidics and MEMs. Sandia National Laboratories. Sandia Report SAND2006-7020. https://doi.org/10.2172/1137218
- Yu, C., Zhu, X., Cao, M., Yu, C., Li, K., & Jiang, L. (2016). Superhydrophobic helix: controllable and directional bubble transport in an aqueous environment. Journal of Materials Chemistry A, 4(43), 16865-16870. https://doi.org/10.1039/C6TA07318B
- Manoharan, K., & Bhattacharya, S. (2019). Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. Journal of Micromanufacturing, 2(1), 59-78. https://doi.org/10.1177/2516598419836345
- Dou, R., Chen, J., Zhang, Y., Wang, X., Cui, D., Song, Y., ... & Wang, J. (2014). Anti-icing coating with an aqueous lubricating layer. ACS applied materials & interfaces, 6(10), 6998-7003. https://doi.org/10.1021/am501252u
- Boinovich, L. B., & Emelyanenko, A. M. (2013). Anti-icing potential of superhydrophobic coatings. Mendeleev Communications, 23(1), 3-10. https://doi.org/10.1016/j.mencom.2013.01.002
- Farhadi, S., Farzaneh, M., & Kulinich, S. A. (2011). Anti-icing performance of superhydrophobic surfaces. Applied Surface Science, 257(14), 6264-6269. https://doi.org/10.1016/j.apsusc.2011.02.057
- Si, Y., & Guo, Z. (2015). Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 7(14), 5922-5946. https://doi.org/10.1039/C4NR07554D
- Kim, P., Wong, T. S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E., & Aizenberg, J. (2012). Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS nano, 6(8), 6569-6577. https://doi.org/10.1021/nn302310q
- Chen, J., Li, K., Wu, S., Liu, J., Liu, K., & Fan, Q. (2017). Durable anti-icing coatings based on self-sustainable lubricating layer. ACS omega, 2(5), 2047-2054. https://doi.org/10.1021/acsomega.7b00359
- Kibar, A., & Yiğit, K. S. (2018). The spreading profile of an impinging liquid jet on the hydrophobic surfaces. Sigma Journal of Engineering and Natural Sciences, 36(3), 609-618.
- Allred, T. P., Weibel, J. A., & Garimella, S. V. (2018). Enabling highly effective boiling from superhydrophobic surfaces. Physical review letters, 120(17), 174501. https://doi.org/10.1103/PhysRevLett.120.174501
- Stahlberg, R., Babauta, K. & Mayer, G. (2011). Superhydrophobic Hairy Leaf Surfaces: Are the Hairs Hydrophilic or Hydrophobic? Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011 2011, Denver, Colorado, USA, IMECE2011-6590
- Young, T. (1832). An essay on the cohesion of fluids. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London (No. 1, pp. 171-172). London: The Royal Society.
- Erbil, H. Y., Demirel, A. L., Avcı, Y., & Mert, O. (2003). Transformation of a simple plastic into a superhydrophobic surface. Science, 299(5611), 1377-1380. https://doi.org/10.1126/science.1078365
- Kibar, A. (2016). Süperhidrofobik ve hidrofobik yüzeyler üzerinde sıvı damlası gaz kabarcığı ve sıvı jeti dinamiğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(7), 613-619. https://doi.org/10.5505/pajes.2016.07088
- He, Y., Jiang, C., Cao, X., Chen, J., Tian, W., & Yuan, W. (2014). Reducing ice adhesion by hierarchical micro-nano-pillars. Applied Surface Science, 305, 589-595. https://doi.org/10.1016/j.apsusc.2014.03.139
- Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A., & Choi, C. H. (2013). Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of fluids, 25(2), 5103. https://doi.org/10.1063/1.4791602
- Merkle, C. L., & Deutsch, S. (1990). Drag reduction in liquid boundary layers by gas injection. Progress in Astronautics and Aeronautics, 123, 351-412.
- Brown, S., Lengaigne, J., Sharifi, N., Pugh, M., Moreau, C., Dolatabadi, A., ... & Klemberg-Sapieha, J. E. (2020). Durability of superhydrophobic duplex coating systems for aerospace applications. Surface and Coatings Technology, 401, 126249.
- Cao, L., Jones, A. K., Sikka, V. K., Wu, J., & Gao, D. (2009). Anti-icing superhydrophobic coatings. Langmuir, 25(21), 12444-12448. https://doi.org/10.1021/la902882b
- Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J. A., Krupenkin, T., & Aizenberg, J. (2010). Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS nano, 4(12), 7699-7707. https://doi.org/10.1021/nn102557p
- Yumurtaci, Z., & Sarigul, A. (2011). Santrifüj pompalarda enerji verimliliği ve uygulamaları. Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi, 49-58.
- Pehlivan, M. (2005). Hidrofobik Yüzeylerin Türbülansli Boru Akimlarinda Sürtünme Kayiplarina Etkisinin Deneysel İncelenmesi. Master’s Thesis, Ondokuz Mayis University.
- McGurk, K. A., Owen, B., Watson, W. D., Nethononda, R. M., Cordell, H. J., Farrall, M., ... & Keavney, B. D. (2020). Heritability of haemodynamics in the ascending aorta. Scientific Reports, 10(1), 14356. https://doi.org/10.1038/s41598-020-71354-7
- Wang, C., Tang, F., Li, Q., Zhang, Y., & Wang, X. (2017). Spray-coated superhydrophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties. Colloids and surfaces A: Physicochemical and engineering aspects, 514, 236-242. https://doi.org/10.1016/j.colsurfa.2016.11.059
- Pehlivan, M., Karakurt, U., Özbey, M. & Gürbüz, M. (2019). Floro polimer kaplamanın bakır plaka üzerine uygulanması ve aşınma üzerine etkisinin incelenmesi. 3th ISAS Booklets, 408-410
- Ou, J., & Rothstein, J. P. (2005). Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Physics of fluids, 17(10), 103606. https://doi.org/10.1063/1.2109867
- Choi, C. H., Ulmanella, U., Kim, J., Ho, C. M., & Kim, C. J. (2006). Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of fluids, 18(8), 7105 https://doi.org/10.1063/1.2337669
- Chinappi, M., & Casciola, C. M. (2010). Intrinsic slip on hydrophobic self-assembled monolayer coatings. Physics of Fluids, 22(4), 2003. https://doi.org/10.1063/1.3394120
- Nouri, N. M., Sekhavat, S., & Mofidi, A. (2012). Drag reduction in a turbulent channel flow with hydrophobic wall. Journal of Hydrodynamics, Ser. B, 24(3), 458-466. https://doi.org/10.1016/S1001-6058(11)60267-9
- Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L., & Perlin, M. (2014). Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Physics of Fluids, 26(8), 5108. https://doi.org/10.1063/1.4892902
- Wang, Z., Li, Q., She, Z., Chen, F., & Li, L. (2012). Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. Journal of Materials Chemistry, 22(9), 4097-4105. https://doi.org/10.1039/C2JM14475A
Year 2024,
Volume: 8 Issue: 1, 1 - 10, 19.01.2024
Serhat Akıncı
,
Filiz Karaomerlıoglu
,
Emre Kaygusuz
References
- Nosonovsky, M., & Bhushan, B. (2008). Lotus-Effect and Water-Repellent Surfaces in Nature. Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, 181-197. https://doi.org/10.1007/978-3-540-78425-8_10
- Whyman, G., Bormashenko, E., & Stein, T. (2008). The rigorous derivation of Young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters, 450(4-6), 355-359. https://doi.org/10.1016/j.cplett.2007.11.033
- Özdoğan, E., Demir, A., & Seventekin, N. (2006). Lotus etkili yüzeyler. Tekstil ve Konfeksiyon, 16(1), 287-290.
- Syms, R. R., & Wright, S. (2016). MEMS mass spectrometers: the next wave of miniaturization. Journal of Micromechanics and Microengineering, 26(2), 023001. https://doi.org/10.1088/0960-1317/26/2/023001
- Iannacci, J. (2015). Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays, 37, 62-71. https://doi.org/10.1016/j.displa.2014.08.003
- Chai, J., Zhang, K., Xue, Y., Liu, W., Chen, T., Lu, Y., & Zhao, G. (2020). Review of MEMS based Fourier transform spectrometers. Micromachines, 11(2), 214. https://doi.org/10.3390/mi11020214
- Ulkir, O., Ertugrul, I., Akkus, N., & Ozer, S. (2022). Fabrication and experimental study of micro-gripper with electrothermal actuation by stereolithography method. Journal of Materials Engineering and Performance, 31(10), 8148-8159. https://doi.org/10.1007/s11665-022-06875-5
- Farré, M., Kantiani, L. & Barceló, D. (2012). Chapter 7 - Microfluidic Devices: Biosensors. Chemical Analysis of Food: Techniques and Applications, Academic Press, 177-217. https://doi.org/10.1016/B978-0-12-384862-8.00007-8
- Branson, E. D., Singh, S., Houston, J. E., Swol, F. V. & Brinker, C. J. (2006). Superhydrophobic Surface Coatings for Microfluidics and MEMs. Sandia National Laboratories. Sandia Report SAND2006-7020. https://doi.org/10.2172/1137218
- Yu, C., Zhu, X., Cao, M., Yu, C., Li, K., & Jiang, L. (2016). Superhydrophobic helix: controllable and directional bubble transport in an aqueous environment. Journal of Materials Chemistry A, 4(43), 16865-16870. https://doi.org/10.1039/C6TA07318B
- Manoharan, K., & Bhattacharya, S. (2019). Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. Journal of Micromanufacturing, 2(1), 59-78. https://doi.org/10.1177/2516598419836345
- Dou, R., Chen, J., Zhang, Y., Wang, X., Cui, D., Song, Y., ... & Wang, J. (2014). Anti-icing coating with an aqueous lubricating layer. ACS applied materials & interfaces, 6(10), 6998-7003. https://doi.org/10.1021/am501252u
- Boinovich, L. B., & Emelyanenko, A. M. (2013). Anti-icing potential of superhydrophobic coatings. Mendeleev Communications, 23(1), 3-10. https://doi.org/10.1016/j.mencom.2013.01.002
- Farhadi, S., Farzaneh, M., & Kulinich, S. A. (2011). Anti-icing performance of superhydrophobic surfaces. Applied Surface Science, 257(14), 6264-6269. https://doi.org/10.1016/j.apsusc.2011.02.057
- Si, Y., & Guo, Z. (2015). Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 7(14), 5922-5946. https://doi.org/10.1039/C4NR07554D
- Kim, P., Wong, T. S., Alvarenga, J., Kreder, M. J., Adorno-Martinez, W. E., & Aizenberg, J. (2012). Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS nano, 6(8), 6569-6577. https://doi.org/10.1021/nn302310q
- Chen, J., Li, K., Wu, S., Liu, J., Liu, K., & Fan, Q. (2017). Durable anti-icing coatings based on self-sustainable lubricating layer. ACS omega, 2(5), 2047-2054. https://doi.org/10.1021/acsomega.7b00359
- Kibar, A., & Yiğit, K. S. (2018). The spreading profile of an impinging liquid jet on the hydrophobic surfaces. Sigma Journal of Engineering and Natural Sciences, 36(3), 609-618.
- Allred, T. P., Weibel, J. A., & Garimella, S. V. (2018). Enabling highly effective boiling from superhydrophobic surfaces. Physical review letters, 120(17), 174501. https://doi.org/10.1103/PhysRevLett.120.174501
- Stahlberg, R., Babauta, K. & Mayer, G. (2011). Superhydrophobic Hairy Leaf Surfaces: Are the Hairs Hydrophilic or Hydrophobic? Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition IMECE2011 2011, Denver, Colorado, USA, IMECE2011-6590
- Young, T. (1832). An essay on the cohesion of fluids. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London (No. 1, pp. 171-172). London: The Royal Society.
- Erbil, H. Y., Demirel, A. L., Avcı, Y., & Mert, O. (2003). Transformation of a simple plastic into a superhydrophobic surface. Science, 299(5611), 1377-1380. https://doi.org/10.1126/science.1078365
- Kibar, A. (2016). Süperhidrofobik ve hidrofobik yüzeyler üzerinde sıvı damlası gaz kabarcığı ve sıvı jeti dinamiğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(7), 613-619. https://doi.org/10.5505/pajes.2016.07088
- He, Y., Jiang, C., Cao, X., Chen, J., Tian, W., & Yuan, W. (2014). Reducing ice adhesion by hierarchical micro-nano-pillars. Applied Surface Science, 305, 589-595. https://doi.org/10.1016/j.apsusc.2014.03.139
- Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A., & Choi, C. H. (2013). Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Physics of fluids, 25(2), 5103. https://doi.org/10.1063/1.4791602
- Merkle, C. L., & Deutsch, S. (1990). Drag reduction in liquid boundary layers by gas injection. Progress in Astronautics and Aeronautics, 123, 351-412.
- Brown, S., Lengaigne, J., Sharifi, N., Pugh, M., Moreau, C., Dolatabadi, A., ... & Klemberg-Sapieha, J. E. (2020). Durability of superhydrophobic duplex coating systems for aerospace applications. Surface and Coatings Technology, 401, 126249.
- Cao, L., Jones, A. K., Sikka, V. K., Wu, J., & Gao, D. (2009). Anti-icing superhydrophobic coatings. Langmuir, 25(21), 12444-12448. https://doi.org/10.1021/la902882b
- Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J. A., Krupenkin, T., & Aizenberg, J. (2010). Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS nano, 4(12), 7699-7707. https://doi.org/10.1021/nn102557p
- Yumurtaci, Z., & Sarigul, A. (2011). Santrifüj pompalarda enerji verimliliği ve uygulamaları. Makina Mühendisleri Odası Tesisat Mühendisliği Dergisi, 49-58.
- Pehlivan, M. (2005). Hidrofobik Yüzeylerin Türbülansli Boru Akimlarinda Sürtünme Kayiplarina Etkisinin Deneysel İncelenmesi. Master’s Thesis, Ondokuz Mayis University.
- McGurk, K. A., Owen, B., Watson, W. D., Nethononda, R. M., Cordell, H. J., Farrall, M., ... & Keavney, B. D. (2020). Heritability of haemodynamics in the ascending aorta. Scientific Reports, 10(1), 14356. https://doi.org/10.1038/s41598-020-71354-7
- Wang, C., Tang, F., Li, Q., Zhang, Y., & Wang, X. (2017). Spray-coated superhydrophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties. Colloids and surfaces A: Physicochemical and engineering aspects, 514, 236-242. https://doi.org/10.1016/j.colsurfa.2016.11.059
- Pehlivan, M., Karakurt, U., Özbey, M. & Gürbüz, M. (2019). Floro polimer kaplamanın bakır plaka üzerine uygulanması ve aşınma üzerine etkisinin incelenmesi. 3th ISAS Booklets, 408-410
- Ou, J., & Rothstein, J. P. (2005). Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Physics of fluids, 17(10), 103606. https://doi.org/10.1063/1.2109867
- Choi, C. H., Ulmanella, U., Kim, J., Ho, C. M., & Kim, C. J. (2006). Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of fluids, 18(8), 7105 https://doi.org/10.1063/1.2337669
- Chinappi, M., & Casciola, C. M. (2010). Intrinsic slip on hydrophobic self-assembled monolayer coatings. Physics of Fluids, 22(4), 2003. https://doi.org/10.1063/1.3394120
- Nouri, N. M., Sekhavat, S., & Mofidi, A. (2012). Drag reduction in a turbulent channel flow with hydrophobic wall. Journal of Hydrodynamics, Ser. B, 24(3), 458-466. https://doi.org/10.1016/S1001-6058(11)60267-9
- Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L., & Perlin, M. (2014). Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Physics of Fluids, 26(8), 5108. https://doi.org/10.1063/1.4892902
- Wang, Z., Li, Q., She, Z., Chen, F., & Li, L. (2012). Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. Journal of Materials Chemistry, 22(9), 4097-4105. https://doi.org/10.1039/C2JM14475A