Research Article
BibTex RIS Cite

Ship Detection from Optical Satellite Images Using Convolutional Neural Networks

Year 2025, Volume: 9 Issue: 2, 342 - 353
https://doi.org/10.31127/tuje.1529660

Abstract

Since most of the world is covered with oceans and seas, seas and oceans have aroused people's curiosity throughout history. Humans have used oceans and seas in versatile ways. The seas are critical areas for trade, transportation, fishing, tourism, energy resources, border security, defense, and intelligence operations. Today, the increasing use of maritime routes creates problems in terms of maritime security, maritime traffic, and management. It has become necessary to look for alternatives to solve such problems in the maritime industry, and deep learning techniques have been used to solve these problems. This paper presents ship detection method from optical satellite images using convolutional neural networks. The motivation of this paper is to produce solutions to the issues of detecting possible dangers in areas with heavy maritime traffic, preventing illegal fishing, preventing pirate attacks, human smuggling, country defense, security and tracking of maritime trade routes with ship detection systems. The convolutional neural network models used in the paper are based on YOLOv8 and YOLOv9 and include different packages of these models. The dataset used in the paper was created using the FGSCR-42 dataset. The dataset used in the paper includes 12 classes. The performance of the model results was compared, and the results are presented in this paper. The mAP50 value of our YOLOv8l model, which we use as a new approach to ship detection studies in the literature, is 98.9%. Compared to similar studies in the literature, our model obtains a higher mAP value.

References

  • Marine Traffic. (n.d.). Live map. Retrieved August 7, 2024, from https://help.marinetraffic.com/hc/en-us/articles/204062548-Live-Map
  • IMEAK. (2023). Maritime sector report Istanbul 2023. Istanbul & Marmara, Aegean, Mediterranean, Black Sea Regions Chamber of Shipping.
  • Kayaalp, K., & Süzen, A. A. (2018). Derin öğrenme ve Türkiye’deki uygulamaları. IKSAD International Publishing House.
  • Fukushima, K. N. (1980). A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. https://doi.org/10.1007/BF00344251
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. https://doi.org/10.1113/jphysiol.1968.sp008455
  • Le Cun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539
  • Aydın, V. A. (2024). Comparison of CNN-based methods for yoga pose classification. Turkish Journal of Engineering, 8(1), 65–75. https://doi.org/10.31127/tuje.1275826
  • Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3642–2649. https://doi.org/10.48550/arXiv.1202.2745
  • Cireşan, D., Meier, U., Masci, J., & Gambardella, L. M. (2012). Flexible high-performance convolutional neural networks for image classification. Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 1237–1242. https://doi.org/10.5591/978-1-57735-516- 8/IJCAI11-210
  • Othman, M. M. (2023). Modeling of daily groundwater level using deep learning neural networks. Turkish Journal of Engineering, 7(4), 331–337. https://doi.org/10.31127/tuje.1169908
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126.
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2023). Carbon Monoxide forecasting with artificial neural networks for Konya (Case Study of Meram). Engineering Applications, 2(1), 69–74.
  • Jain, S., Rustagi, A., Saurav, S., Saini, R., & Singh, S. (2021). Three-dimensional CNN-inspired deep learning architecture for Yoga pose recognition in the real-world environment. Neural Computing and Applications, 33, 6427–6441. https://doi.org/10.1007/s00521-020-05405-5
  • Singh, A. P., Singh, M., Bhatia, K., & Pathak, H. (2024). Encrypted malware detection methodology without decryption using deep learning-based approaches. Turkish Journal of Engineering, 8(3), 498–509. https://doi.org/10.31127/tuje.1416933
  • Grefenstette, E., Blunsom, P., Freitas, N. de, & Hermann, K. M. (2014). A deep architecture for semantic parsing. https://doi.org/10.48550/arXiv.1404.7296
  • Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL). https://doi.org/10.3115/v1/P14-1062
  • Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181
  • Kayıran, H. F. (2022). The function of artificial intelligence and its sub-branches in the field of health. Engineering Applications, 1(2), 99–107. Retrieved September 14, 2024, from https://publish.mersin.e du.tr/index.php/enap/article/view/328
  • Pajaziti, A., Basholli, F., & Zhaveli, Y. (2023). Identification and classification of fruits through robotic system by using artificial intelligence. Engineering Applications, 2(2), 154–163. Retrieved September 14, 2024, from https://publish.mersin. edu.tr/index.php/enap/article/view/974
  • Ertuğrul, Özgür L., & İnal, F. (2022). Assessment of the artificial fiber contribution on the shear strength parameters of soils. Advanced Engineering Science, 2, 93–100. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/ades/article/view/172
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/ades/article/view/329
  • Naumov, A., Khmarskiy, P., Byshnev, N., & Piatrouski, M. (2023). Methods and software for estimation of total electron content in ionosphere using GNSS observations. Engineering Applications, 2(3), 243–253. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/enap/article/view/1165
  • Mirbakhsh, A., Lee, J., Jagirdar, R., Kim, H., & Besenski, D. (2023). Collective assessments of active traffic management strategies in an extensive microsimulation testbed. Engineering Applications, 2(2), 146–153. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/enap/article/view/929
  • Mema, B., Basholli, F., & Hyka, D. (2024). Learning transformation and virtual interaction through ChatGPT in Albanian higher education. Advanced Engineering Science, 4, 130–140. Retrieved September 14, 2024, from https://publish.mersin .edu.tr/index.php/ades/article/view/1509
  • Yüksek, G., Muratoğlu, Y., & Alkaya, A. (2022). Modelling of supercapacitor by using parameter estimation method for energy storage system. Advanced Engineering Science, 2, 67–73. Retrieved September 14, 2024, from https://publish.mersin .edu.tr/index.php/ades/article/view/98
  • Kaya, Y., Şenol, H.İ., Yiğit, A.Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117- 123. https://doi.org/10.14358/PERS.22-00101R2
  • Akar, Ö, Saralioğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12-24. https://doi.org/10.26833/ijeg.1252298
  • Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio- Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and
  • optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239-250. https://doi.org/10.26833/ijeg.1118542
  • Demirgül, T., Demir, V., & Sevimli, M. F. (2024). Farklı makine öğrenmesi yaklaşımları ile Türkiye'nin solar radyasyon tahmini. Geomatik, 9(1), 106-122. https://doi.org/10.29128/geomatik.1374383
  • Hazer, A., Bozdağ, A., & Atasever, Ü. H. (2024). Hiper-optimize edilmiş makine öğrenim teknikleri ile taşınmaz değerlemesi, Yozgat kenti örneği. Geomatik, 9 (3), 299-312. https://doi.org/10.29128/geomatik.1454915
  • Günen, M. A., & Beşdok, E. (2023). Effect of denoising methods for hyperspectral images classification: DnCNN, NGM, CSF, BM3D and Wiener. Mersin Photogrammetry Journal, 5(1), 1-9. https://doi.org/10.53093/mephoj.1213166
  • Demirel, Y., & Türk, N. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6(2), 66- 78. https://doi.org/10.53093/mephoj.1575877
  • Gharechelou, S., Tateishi, R., Sri Sumantyo, J. T., & Johnson, B. A. (2021). Soil moisture retrieval using polarimetric SAR data and experimental observations in an arid environment. ISPRS International Journal of Geo-Information, 10(10), 711. https://doi.org/10.3390/ijgi1010071
  • Sakshaug, S. E. H. (2013). Evaluation of polarimetric SAR decomposition methods for tropical forest analysis. University of Tromsø.
  • Wang, B., Han, B., & Yang, L. (2021). Accurate real-time ship target detection using YOLOv4. 2021 6th International Conference on Transportation Information and Safety (ICTIS), 222–227. https://doi.org/10.1109/ICTIS54573.2021.9798495
  • Hong, Z. H., et al. (2021). Multi-scale ship detection from SAR and optical imagery via a more accurate YOLOv3. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6083–6101. https://doi.org/10.1109/JSTARS.2021.3087555
  • Si, J., Song, B., Wu, J., Lin, W., Huang, W., & Chen, S. (2023). Maritime ship detection method for satellite images based on multiscale feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 6642–6655. https://doi.org/10.1109/JSTARS.2023.3296898
  • Di, Y., Jiang, Z., & Zhang, H. (2021). A public dataset for fine-grained ship classification in optical remote sensing images. Remote Sensing, 13(4), 747. https://doi.org/10.3390/rs13040747
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1409.1556
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5987–5995. https://doi.org/10.1109/CVPR.2017.634
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269. https://doi.org/10.1109/CVPR.2017.243
  • Lin, T. Y., Chowdhury, A. R., & Maji, S. (2015). Bilinear CNN models for fine-grained visual recognition. Proceedings of the International Conference on Computer Vision (ICCV).
  • Fu, J., Zheng, H., & Mei, T. (2017). Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4476–4484. https://doi.org/10.1109/CVPR.2017.476
  • Chen, Y., Bai, Y., Zhang, W., & Mei, T. (2019). Destruction and construction learning for fine-grained image recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5152–5161. https://doi.org/10.1109/CVPR.2019.00530
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/CVPR.2016.91
  • GitHub. Ultralytics. Retrieved August 7, 2024, from https://github.com/ultralytics/ultralytics?ref=blog.roboflow.com
  • Wang, C.-Y., Yeh, I.-H., & Hong-Yuan, M. L. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. https://doi.org/10.48550/arXiv.2402.13616
Year 2025, Volume: 9 Issue: 2, 342 - 353
https://doi.org/10.31127/tuje.1529660

Abstract

References

  • Marine Traffic. (n.d.). Live map. Retrieved August 7, 2024, from https://help.marinetraffic.com/hc/en-us/articles/204062548-Live-Map
  • IMEAK. (2023). Maritime sector report Istanbul 2023. Istanbul & Marmara, Aegean, Mediterranean, Black Sea Regions Chamber of Shipping.
  • Kayaalp, K., & Süzen, A. A. (2018). Derin öğrenme ve Türkiye’deki uygulamaları. IKSAD International Publishing House.
  • Fukushima, K. N. (1980). A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. https://doi.org/10.1007/BF00344251
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. https://doi.org/10.1113/jphysiol.1968.sp008455
  • Le Cun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539
  • Aydın, V. A. (2024). Comparison of CNN-based methods for yoga pose classification. Turkish Journal of Engineering, 8(1), 65–75. https://doi.org/10.31127/tuje.1275826
  • Cireşan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3642–2649. https://doi.org/10.48550/arXiv.1202.2745
  • Cireşan, D., Meier, U., Masci, J., & Gambardella, L. M. (2012). Flexible high-performance convolutional neural networks for image classification. Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 1237–1242. https://doi.org/10.5591/978-1-57735-516- 8/IJCAI11-210
  • Othman, M. M. (2023). Modeling of daily groundwater level using deep learning neural networks. Turkish Journal of Engineering, 7(4), 331–337. https://doi.org/10.31127/tuje.1169908
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126.
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2023). Carbon Monoxide forecasting with artificial neural networks for Konya (Case Study of Meram). Engineering Applications, 2(1), 69–74.
  • Jain, S., Rustagi, A., Saurav, S., Saini, R., & Singh, S. (2021). Three-dimensional CNN-inspired deep learning architecture for Yoga pose recognition in the real-world environment. Neural Computing and Applications, 33, 6427–6441. https://doi.org/10.1007/s00521-020-05405-5
  • Singh, A. P., Singh, M., Bhatia, K., & Pathak, H. (2024). Encrypted malware detection methodology without decryption using deep learning-based approaches. Turkish Journal of Engineering, 8(3), 498–509. https://doi.org/10.31127/tuje.1416933
  • Grefenstette, E., Blunsom, P., Freitas, N. de, & Hermann, K. M. (2014). A deep architecture for semantic parsing. https://doi.org/10.48550/arXiv.1404.7296
  • Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL). https://doi.org/10.3115/v1/P14-1062
  • Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181
  • Kayıran, H. F. (2022). The function of artificial intelligence and its sub-branches in the field of health. Engineering Applications, 1(2), 99–107. Retrieved September 14, 2024, from https://publish.mersin.e du.tr/index.php/enap/article/view/328
  • Pajaziti, A., Basholli, F., & Zhaveli, Y. (2023). Identification and classification of fruits through robotic system by using artificial intelligence. Engineering Applications, 2(2), 154–163. Retrieved September 14, 2024, from https://publish.mersin. edu.tr/index.php/enap/article/view/974
  • Ertuğrul, Özgür L., & İnal, F. (2022). Assessment of the artificial fiber contribution on the shear strength parameters of soils. Advanced Engineering Science, 2, 93–100. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/ades/article/view/172
  • Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K. (2022). On behalf of an intelligent approach based on 3D CNN and multimodal remote sensing data for precise crop yield estimation: Case study of wheat in Morocco. Advanced Engineering Science, 2, 118–126. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/ades/article/view/329
  • Naumov, A., Khmarskiy, P., Byshnev, N., & Piatrouski, M. (2023). Methods and software for estimation of total electron content in ionosphere using GNSS observations. Engineering Applications, 2(3), 243–253. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/enap/article/view/1165
  • Mirbakhsh, A., Lee, J., Jagirdar, R., Kim, H., & Besenski, D. (2023). Collective assessments of active traffic management strategies in an extensive microsimulation testbed. Engineering Applications, 2(2), 146–153. Retrieved September 14, 2024, from https://publish.mersin.edu.tr/index.php/enap/article/view/929
  • Mema, B., Basholli, F., & Hyka, D. (2024). Learning transformation and virtual interaction through ChatGPT in Albanian higher education. Advanced Engineering Science, 4, 130–140. Retrieved September 14, 2024, from https://publish.mersin .edu.tr/index.php/ades/article/view/1509
  • Yüksek, G., Muratoğlu, Y., & Alkaya, A. (2022). Modelling of supercapacitor by using parameter estimation method for energy storage system. Advanced Engineering Science, 2, 67–73. Retrieved September 14, 2024, from https://publish.mersin .edu.tr/index.php/ades/article/view/98
  • Kaya, Y., Şenol, H.İ., Yiğit, A.Y., & Yakar, M. (2023). Car detection from very high-resolution UAV images using deep learning algorithms. Photogrammetric Engineering & Remote Sensing, 89(2), 117- 123. https://doi.org/10.14358/PERS.22-00101R2
  • Akar, Ö, Saralioğlu, E., Güngör, O., & Bayata, H. F. (2024). Semantic segmentation of very-high spatial resolution satellite images: A comparative analysis of 3D-CNN and traditional machine learning algorithms for automatic vineyard detection. International Journal of Engineering and Geosciences, 9(1), 12-24. https://doi.org/10.26833/ijeg.1252298
  • Mahdavifard, M., Ahangar, S. K., Feizizadeh, B., Kamran, K. V., & Karimzadeh, S. (2023). Spatio- Temporal monitoring of Qeshm mangrove forests through machine learning classification of SAR and
  • optical images on Google Earth Engine. International Journal of Engineering and Geosciences, 8(3), 239-250. https://doi.org/10.26833/ijeg.1118542
  • Demirgül, T., Demir, V., & Sevimli, M. F. (2024). Farklı makine öğrenmesi yaklaşımları ile Türkiye'nin solar radyasyon tahmini. Geomatik, 9(1), 106-122. https://doi.org/10.29128/geomatik.1374383
  • Hazer, A., Bozdağ, A., & Atasever, Ü. H. (2024). Hiper-optimize edilmiş makine öğrenim teknikleri ile taşınmaz değerlemesi, Yozgat kenti örneği. Geomatik, 9 (3), 299-312. https://doi.org/10.29128/geomatik.1454915
  • Günen, M. A., & Beşdok, E. (2023). Effect of denoising methods for hyperspectral images classification: DnCNN, NGM, CSF, BM3D and Wiener. Mersin Photogrammetry Journal, 5(1), 1-9. https://doi.org/10.53093/mephoj.1213166
  • Demirel, Y., & Türk, N. (2024). Automatic detection of active fires and burnt areas in forest areas using optical satellite imagery and deep learning methods. Mersin Photogrammetry Journal, 6(2), 66- 78. https://doi.org/10.53093/mephoj.1575877
  • Gharechelou, S., Tateishi, R., Sri Sumantyo, J. T., & Johnson, B. A. (2021). Soil moisture retrieval using polarimetric SAR data and experimental observations in an arid environment. ISPRS International Journal of Geo-Information, 10(10), 711. https://doi.org/10.3390/ijgi1010071
  • Sakshaug, S. E. H. (2013). Evaluation of polarimetric SAR decomposition methods for tropical forest analysis. University of Tromsø.
  • Wang, B., Han, B., & Yang, L. (2021). Accurate real-time ship target detection using YOLOv4. 2021 6th International Conference on Transportation Information and Safety (ICTIS), 222–227. https://doi.org/10.1109/ICTIS54573.2021.9798495
  • Hong, Z. H., et al. (2021). Multi-scale ship detection from SAR and optical imagery via a more accurate YOLOv3. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6083–6101. https://doi.org/10.1109/JSTARS.2021.3087555
  • Si, J., Song, B., Wu, J., Lin, W., Huang, W., & Chen, S. (2023). Maritime ship detection method for satellite images based on multiscale feature fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 6642–6655. https://doi.org/10.1109/JSTARS.2023.3296898
  • Di, Y., Jiang, Z., & Zhang, H. (2021). A public dataset for fine-grained ship classification in optical remote sensing images. Remote Sensing, 13(4), 747. https://doi.org/10.3390/rs13040747
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1409.1556
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5987–5995. https://doi.org/10.1109/CVPR.2017.634
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269. https://doi.org/10.1109/CVPR.2017.243
  • Lin, T. Y., Chowdhury, A. R., & Maji, S. (2015). Bilinear CNN models for fine-grained visual recognition. Proceedings of the International Conference on Computer Vision (ICCV).
  • Fu, J., Zheng, H., & Mei, T. (2017). Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4476–4484. https://doi.org/10.1109/CVPR.2017.476
  • Chen, Y., Bai, Y., Zhang, W., & Mei, T. (2019). Destruction and construction learning for fine-grained image recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5152–5161. https://doi.org/10.1109/CVPR.2019.00530
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/CVPR.2016.91
  • GitHub. Ultralytics. Retrieved August 7, 2024, from https://github.com/ultralytics/ultralytics?ref=blog.roboflow.com
  • Wang, C.-Y., Yeh, I.-H., & Hong-Yuan, M. L. (2024). YOLOv9: Learning what you want to learn using programmable gradient information. https://doi.org/10.48550/arXiv.2402.13616
There are 50 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Articles
Authors

Neslihan Toprak 0009-0004-2142-6497

Yıldıray Yalman 0000-0002-2313-4525

Early Pub Date January 19, 2025
Publication Date
Submission Date August 7, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Toprak, N., & Yalman, Y. (n.d.). Ship Detection from Optical Satellite Images Using Convolutional Neural Networks. Turkish Journal of Engineering, 9(2), 342-353. https://doi.org/10.31127/tuje.1529660
AMA Toprak N, Yalman Y. Ship Detection from Optical Satellite Images Using Convolutional Neural Networks. TUJE. 9(2):342-353. doi:10.31127/tuje.1529660
Chicago Toprak, Neslihan, and Yıldıray Yalman. “Ship Detection from Optical Satellite Images Using Convolutional Neural Networks”. Turkish Journal of Engineering 9, no. 2 n.d.: 342-53. https://doi.org/10.31127/tuje.1529660.
EndNote Toprak N, Yalman Y Ship Detection from Optical Satellite Images Using Convolutional Neural Networks. Turkish Journal of Engineering 9 2 342–353.
IEEE N. Toprak and Y. Yalman, “Ship Detection from Optical Satellite Images Using Convolutional Neural Networks”, TUJE, vol. 9, no. 2, pp. 342–353, doi: 10.31127/tuje.1529660.
ISNAD Toprak, Neslihan - Yalman, Yıldıray. “Ship Detection from Optical Satellite Images Using Convolutional Neural Networks”. Turkish Journal of Engineering 9/2 (n.d.), 342-353. https://doi.org/10.31127/tuje.1529660.
JAMA Toprak N, Yalman Y. Ship Detection from Optical Satellite Images Using Convolutional Neural Networks. TUJE.;9:342–353.
MLA Toprak, Neslihan and Yıldıray Yalman. “Ship Detection from Optical Satellite Images Using Convolutional Neural Networks”. Turkish Journal of Engineering, vol. 9, no. 2, pp. 342-53, doi:10.31127/tuje.1529660.
Vancouver Toprak N, Yalman Y. Ship Detection from Optical Satellite Images Using Convolutional Neural Networks. TUJE. 9(2):342-53.
Flag Counter