Research Article
BibTex RIS Cite

Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing

Year 2025, Volume: 9 Issue: 3, 425 - 432
https://doi.org/10.31127/tuje.1531603

Abstract

This article evaluates the impact of nano silicon carbide (nSiC) addition (0, 1, 2, 3, and 4 wt.%) on the surface of AZ31 magnesium alloy towards improvement in wear resistance for different applied load (AL) and sliding distance (SD). Friction stir processing (FSP) is performed on the surface of AZ31 to create a weld pool to disperse the nSiC particles utilizing a cylindrical tool in a computerized controlled machine tool. The study objective is to enhance the wear resilience of the lightweight soft AZ31 through this procedure. The G99 standard of ASTM was adopted for performing the experimentations. nSiC added to the surface lowers the wear rate (WR) of the FSPed specimens subjected to different AL and SD. The coefficient of friction (CoF) and WR tend to drop with the inclusion of nSiC till 3 wt.% above which a negative trend is observed due to the improper bonding and agglomeration of nSiC particles that impart lesser strength and hardness on the surface. As compared with an AL of 10 N, the AL of 50 N produces a 171.43% higher WR for as received alloy, for AZ31+3%nSiC, the WL is increased by 337.5% whereas the CoF is increased by 14.93% for as received alloy and 15.15% for AZ31+3%nSiC composite. Similarly, increasing the SD from 250 to 1250m, the WR is doubled for as received alloy and 181.82% for AZ31+3%nSiC, the CoF is increased by 0.41%.

References

  • Dong, H. (2010). Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Elsevier Science. https://books.google.co.in/books?id=wAPfQwAACAAJ
  • Omarov, S., Nauryz, N., Talamona, D., & Perveen, A. (2022). Surface Modification Techniques for Metallic Biomedical Alloys: A Concise Review. Metals, 13(1), 82. https://doi.org/10.3390/met13010082
  • Gezer, U., Demir, B., Kepir, Y., Gunoz, A., & Kara, M. (2023). A numerical study on the low-velocity impact response of hybrid composite materials. Turkish Journal of Engineering, 7(4), 314–321. https://doi.org/10.31127/tuje.1191785
  • Cagan, S. C. ., & Buldum, B. B. . (2021). Influence of the effect of the ball burnishing process applied to Al 7075-T6 alloy in different nano-aluminum powder-added grease environment on surface quality. Advanced Engineering Science, 1, 20–25.
  • Davis, R., Singh, A., Debnath, K., Keshri, A. K., Soares, P., Sopchenski, L., Terryn, H. A., & Prakash, V. (2023). Surface modification of biodegradable Mg alloy by adapting µEDM capabilities with cryogenically-treated tool electrodes. The International Journal of Advanced Manufacturing Technology, 126(9–10), 4617–4636. https://doi.org/10.1007/s00170-023-11395-0
  • Mahto, V. K., Singh, A. K., & Malik, A. (2023). Surface modification techniques of magnesium-based alloys for implant applications. Journal of Coatings Technology and Research, 20(2), 433–455. https://doi.org/10.1007/s11998-022-00716-9
  • Akinlabi, E. T., & Mahamood, R. M. (2020). Solid-State Welding: Friction and Friction Stir Welding Processes. Springer International Publishing. https://books.google.co.in/books?id=rdfIDwAAQBAJ
  • Gupta, M. K. (2020). Friction stir process: a green fabrication technique for surface composites—a review paper. SN Applied Sciences, 2(4), 532. https://doi.org/10.1007/s42452-020-2330-2
  • Subramani, M., Huang, S.-J., & Borodianskiy, K. (2022). Effect of SiC Nanoparticles on AZ31 Magnesium Alloy. Materials, 15(3), 1004. https://doi.org/10.3390/ma15031004
  • Shen, M., Zhu, X., Han, B., Ying, T., & Jia, J. (2022). Dry sliding wear behaviour of AZ31 magnesium alloy strengthened by nanoscale SiCp. Journal of Materials Research and Technology, 16, 814–823. https://doi.org/10.1016/j.jmrt.2021.12.048
  • Padmavathi, K. R., Alharbi, S. A., Venkatesh, R., & Sivaprakash, E. (2024). SiC Blending Behaviour of Hybrid AZ31 Alloy Nanocomposite: Metallographic and Mechanical Studies. Silicon. 16, 2771–2779, https://doi.org/10.1007/s12633-024-02880-6
  • Abdollahzadeh, A., Shokuhfar, A., Omidvar, H., Cabrera, J., Solonin, A., Ostovari, A., & Abbasi, M. (2019). Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 831–841. https://doi.org/10.1177/1464420717708485
  • Kumar, T. S., Raghu, R., Thankachan, T., Čep, R., & Kalita, K. (2024). Mechanical property analysis and dry sand three-body abrasive wear behaviour of AZ31/ZrO2 composites produced by stir casting. Scientific Reports, 14(1), 1543. https://doi.org/10.1038/s41598-024-52100-9
  • Kumar, T. S., Thankachan, T., Shalini, S., Čep, R., & Kalita, K. (2023). Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing. Scientific Reports, 13(1), 20089. https://doi.org/10.1038/s41598-023-47381-5
  • Xiong, G. Y., Yu, M., & Zhao, L. Z. (2012). AZ31 Magnesium Alloy Surface Laser Alloying of SiC-316L Composite Coating. Advanced Materials Research, 538–541, 243–246. https://doi.org/10.4028/www.scientific.net/AMR.538-541.243
  • Jiang, H. Y., Ding, W. Bin, Zeng, X. Q., Li, D. H., & Yao, S. S. (2007). Mechanical Behavior of Gas Tungsten Arc Surface Modified Composite Layer on Mg Alloy AZ31 with SiC p and Aluminum. Materials Science Forum, 546–549, 485–490. https://doi.org/10.4028/www.scientific.net/MSF.546-549.485
  • Arora, H. S., Singh, H., Dhindaw, B. K., & Grewal, H. S. (2012). Improving the Tribological Properties of Mg Based AZ31 Alloy Using Friction Stir Processing. Advanced Materials Research, 585, 579–583. https://doi.org/10.4028/www.scientific.net/AMR.585.579
  • Dziubińska, A., Gontarz, A., Horzelska, K., & Pieśko, P. (2015). The Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology. Procedia Manufacturing, 2, 337–341. https://doi.org/10.1016/j.promfg.2015.07.059
  • Li, X., Zhang, M., Fang, X., Li, Z., Jiao, G., & Huang, K. (2023). Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual and Physical Prototyping, 18(1), e2170252. https://doi.org/10.1080/17452759.2023.2170252
  • Gizowska, M., Piątek, M., Perkowski, K., & Antosik, A. (2023). Influence of Sintering Conditions and Nanosilicon Carbide Concentration on the Mechanical and Thermal Properties of Si3N4-Based Materials. Materials, 16(5), 2079. https://doi.org/10.3390/ma16052079
  • Abd Elnabi, M. M., El Mokadem, A., & Osman, T. (2022). Optimization of process parameters for friction stir welding of dissimilar aluminum alloys using different Taguchi arrays. The International Journal of Advanced Manufacturing Technology, 121(5–6), 3935–3964. https://doi.org/10.1007/s00170-022-09531-3
  • Manroo, S. A., Khan, N. Z., & Ahmad, B. (2022). Study on surface modification and fabrication of surface composites of magnesium alloys by friction stir processing: a review. Journal of Engineering and Applied Science, 69(1), 25. https://doi.org/10.1186/s44147-022-00073-9
  • Kumar, A., Singh, V. P., Nirala, A., Singh, R. C., Chaudhary, R., Mourad, A.-H. I., Sahoo, B. K., & Kumar, D. (2023). Influence of tool rotational speed on mechanical and corrosion behaviour of friction stir processed AZ31/Al2O3 nanocomposite. Journal of Magnesium and Alloys, 11(7), 2585–2599. https://doi.org/10.1016/j.jma.2023.06.012
  • Muralidhara, B., Babu, S. K., & Suresha, B. (2020). Studies on mechanical, thermal and tribological properties of carbon fibre-reinforced boron nitride-filled epoxy composites. High Performance Polymers, 32(9), 1061–1081. https://doi.org/10.1177/0954008320929396
  • Vasanthkumar, P., Balasundaram, R., & Senthilkumar, N. (2022). Sliding-friction wear of a seashell particulate reinforced polymer matrix composite: modeling and optimization through RSM and Grey Wolf optimizer. Transactions of the Canadian Society for Mechanical Engineering, 46(2), 329–345. https://doi.org/10.1139/tcsme-2021-0139
  • Bhojan, A., Senthilkumar, N., & Deepanraj, B. (2016). Parametric Influence of Friction Stir Welding on Cast Al6061/20%SiC/2%MoS2 MMC Mechanical Properties. Applied Mechanics and Materials, 852, 297–303. https://doi.org/10.4028/www.scientific.net/AMM.852.297
  • Wang, R., Xiong, Y., Yang, K., Zhang, T., Zhang, F., Xiong, B., Hao, Y., Zhang, H., Chen, Y., & Tang, J. (2023). Advanced progress on the significant influences of multi-dimensional nanofillers on the tribological performance of coatings. RSC Advances, 13(29), 19981–20022. https://doi.org/10.1039/D3RA01550E
  • Radhika, N., Krishna, S. A., Basak, A. K., & Adediran, A. A. (2024). Microstructure and tribological behaviour of CoCrCuFeTi high entropy alloy reinforced SS304 through friction stir processing. Scientific Reports, 14(1), 3662. https://doi.org/10.1038/s41598-024-54267-7
  • Ostovan, F., Azimifar, I., Toozandehjani, M., Shafiei, E., & Shamshirsaz, M. (2021). Synthesis of ex-situ Al5083 reinforced with mechanically-alloyed CNTs and Fe2O3 nanoparticles using friction stir processing. Journal of Materials Research and Technology, 14, 1670–1681. https://doi.org/10.1016/j.jmrt.2021.07.072
  • Durowaye, S., Sekunowo, O., Bolasodun, B., Oduaran, İ., & Lawal, G. (2019). Mechanical and wear characterisation of quarray tailing reinforced A6063 metal matrix composites. Turkish Journal of Engineering, 3(3), 133–139. https://doi.org/10.31127/tuje.490509
  • Sundara Selvan, S., & Senthilkumar, N. (2018). Dry sliding wear behaviour of surface modified az61 magnesium alloy reinforced with nano titanium dioxide. Journal of the Balkan Tribological Association, 24(3), 429–452.
  • Suresh, R. (2020). Comparative study on dry sliding wear behavior of mono (Al2219/B 4 C) and hybrid (Al2219/B 4 C/Gr) metal matrix composites using statistical technique. Journal of the Mechanical Behavior of Materials, 29(1), 57–68. https://doi.org/10.1515/jmbm-2020-0006
  • Vithal, N. D., Krishna, B. B., & Krishna, M. G. (2021). Impact of dry sliding wear parameters on the wear rate of A7075 based composites reinforced with ZrB2 particulates. Journal of Materials Research and Technology, 14, 174–185. https://doi.org/10.1016/j.jmrt.2021.06.005
  • Sundaraselvan, S., Senthilkumar, N., Tamizharasan, T., & Sait, A. N. (2020). Surface modification of AZ61 Magnesium Alloy with Nano TiO2/Al2O3 using Laser Cladding Technique. Materials Today: Proceedings, 21, 717–721. https://doi.org/10.1016/j.matpr.2019.06.745
  • Liu, C. T., Chang, Y. P., & Yeh, J. W. (2022). Study on friction properties of different abrasive materials and polylactic acid materials. Journal of Physics: Conference Series, 2345(1), 012027. https://doi.org/10.1088/1742-6596/2345/1/012027
  • Subramanian, K., Murugesan, S., Mohan, D. G., & Tomków, J. (2021). Study on Dry Sliding Wear and Friction Behaviour of Al7068/Si3N4/BN Hybrid Composites. Materials, 14(21), 6560. https://doi.org/10.3390/ma14216560
  • Suganeswaran, K., Parameshwaran, R., Mohanraj, T., & Radhika, N. (2021). Influence of secondary phase particles Al 2 O 3 /SiC on the microstructure and tribological characteristics of AA7075-based surface hybrid composites tailored using friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(1), 161–178. https://doi.org/10.1177/0954406220932939
  • Bhandari, R., Biswas, P., Mallik, M., & Mondal, M. K. (2024). Dry and Lubrication Sliding Wear Characteristics and Wear Mechanism Mapping for In Situ Al–25Mg 2 Si Composites. Advanced Engineering Materials, 26(2), 2300845https://doi.org/10.1002/adem.202300845
  • Gunoz, A., Kepir, Y., & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6(1), 34–39. https://doi.org/10.31127/tuje.775536
  • Srivyas, P. D., & Charoo, M. S. (2020). Tribological behavior of aluminum silicon eutectic alloy-based composites under dry and wet sliding for variable load and sliding distance. SN Applied Sciences, 2(10), 1654. https://doi.org/10.1007/s42452-020-03433-3
  • Sabari, K., Muniappan, A., & Singh, M. (2024). Enhancing Microstructural Characteristics and Mechanical Properties in Friction Stir Welding of Thick Magnesium Alloy Plates through Optimization. SAE Technical Paper, 2024-01-5014 https://doi.org/10.4271/2024-01-5014
  • Sathish, T., Kaladgi, A. R. R., Mohanavel, V., Arul, K., Afzal, A., Aabid, A., Baig, M., & Saleh, B. (2021). Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters. Materials, 14(11), 2782. https://doi.org/10.3390/ma14112782
Year 2025, Volume: 9 Issue: 3, 425 - 432
https://doi.org/10.31127/tuje.1531603

Abstract

References

  • Dong, H. (2010). Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Elsevier Science. https://books.google.co.in/books?id=wAPfQwAACAAJ
  • Omarov, S., Nauryz, N., Talamona, D., & Perveen, A. (2022). Surface Modification Techniques for Metallic Biomedical Alloys: A Concise Review. Metals, 13(1), 82. https://doi.org/10.3390/met13010082
  • Gezer, U., Demir, B., Kepir, Y., Gunoz, A., & Kara, M. (2023). A numerical study on the low-velocity impact response of hybrid composite materials. Turkish Journal of Engineering, 7(4), 314–321. https://doi.org/10.31127/tuje.1191785
  • Cagan, S. C. ., & Buldum, B. B. . (2021). Influence of the effect of the ball burnishing process applied to Al 7075-T6 alloy in different nano-aluminum powder-added grease environment on surface quality. Advanced Engineering Science, 1, 20–25.
  • Davis, R., Singh, A., Debnath, K., Keshri, A. K., Soares, P., Sopchenski, L., Terryn, H. A., & Prakash, V. (2023). Surface modification of biodegradable Mg alloy by adapting µEDM capabilities with cryogenically-treated tool electrodes. The International Journal of Advanced Manufacturing Technology, 126(9–10), 4617–4636. https://doi.org/10.1007/s00170-023-11395-0
  • Mahto, V. K., Singh, A. K., & Malik, A. (2023). Surface modification techniques of magnesium-based alloys for implant applications. Journal of Coatings Technology and Research, 20(2), 433–455. https://doi.org/10.1007/s11998-022-00716-9
  • Akinlabi, E. T., & Mahamood, R. M. (2020). Solid-State Welding: Friction and Friction Stir Welding Processes. Springer International Publishing. https://books.google.co.in/books?id=rdfIDwAAQBAJ
  • Gupta, M. K. (2020). Friction stir process: a green fabrication technique for surface composites—a review paper. SN Applied Sciences, 2(4), 532. https://doi.org/10.1007/s42452-020-2330-2
  • Subramani, M., Huang, S.-J., & Borodianskiy, K. (2022). Effect of SiC Nanoparticles on AZ31 Magnesium Alloy. Materials, 15(3), 1004. https://doi.org/10.3390/ma15031004
  • Shen, M., Zhu, X., Han, B., Ying, T., & Jia, J. (2022). Dry sliding wear behaviour of AZ31 magnesium alloy strengthened by nanoscale SiCp. Journal of Materials Research and Technology, 16, 814–823. https://doi.org/10.1016/j.jmrt.2021.12.048
  • Padmavathi, K. R., Alharbi, S. A., Venkatesh, R., & Sivaprakash, E. (2024). SiC Blending Behaviour of Hybrid AZ31 Alloy Nanocomposite: Metallographic and Mechanical Studies. Silicon. 16, 2771–2779, https://doi.org/10.1007/s12633-024-02880-6
  • Abdollahzadeh, A., Shokuhfar, A., Omidvar, H., Cabrera, J., Solonin, A., Ostovari, A., & Abbasi, M. (2019). Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 831–841. https://doi.org/10.1177/1464420717708485
  • Kumar, T. S., Raghu, R., Thankachan, T., Čep, R., & Kalita, K. (2024). Mechanical property analysis and dry sand three-body abrasive wear behaviour of AZ31/ZrO2 composites produced by stir casting. Scientific Reports, 14(1), 1543. https://doi.org/10.1038/s41598-024-52100-9
  • Kumar, T. S., Thankachan, T., Shalini, S., Čep, R., & Kalita, K. (2023). Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing. Scientific Reports, 13(1), 20089. https://doi.org/10.1038/s41598-023-47381-5
  • Xiong, G. Y., Yu, M., & Zhao, L. Z. (2012). AZ31 Magnesium Alloy Surface Laser Alloying of SiC-316L Composite Coating. Advanced Materials Research, 538–541, 243–246. https://doi.org/10.4028/www.scientific.net/AMR.538-541.243
  • Jiang, H. Y., Ding, W. Bin, Zeng, X. Q., Li, D. H., & Yao, S. S. (2007). Mechanical Behavior of Gas Tungsten Arc Surface Modified Composite Layer on Mg Alloy AZ31 with SiC p and Aluminum. Materials Science Forum, 546–549, 485–490. https://doi.org/10.4028/www.scientific.net/MSF.546-549.485
  • Arora, H. S., Singh, H., Dhindaw, B. K., & Grewal, H. S. (2012). Improving the Tribological Properties of Mg Based AZ31 Alloy Using Friction Stir Processing. Advanced Materials Research, 585, 579–583. https://doi.org/10.4028/www.scientific.net/AMR.585.579
  • Dziubińska, A., Gontarz, A., Horzelska, K., & Pieśko, P. (2015). The Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology. Procedia Manufacturing, 2, 337–341. https://doi.org/10.1016/j.promfg.2015.07.059
  • Li, X., Zhang, M., Fang, X., Li, Z., Jiao, G., & Huang, K. (2023). Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual and Physical Prototyping, 18(1), e2170252. https://doi.org/10.1080/17452759.2023.2170252
  • Gizowska, M., Piątek, M., Perkowski, K., & Antosik, A. (2023). Influence of Sintering Conditions and Nanosilicon Carbide Concentration on the Mechanical and Thermal Properties of Si3N4-Based Materials. Materials, 16(5), 2079. https://doi.org/10.3390/ma16052079
  • Abd Elnabi, M. M., El Mokadem, A., & Osman, T. (2022). Optimization of process parameters for friction stir welding of dissimilar aluminum alloys using different Taguchi arrays. The International Journal of Advanced Manufacturing Technology, 121(5–6), 3935–3964. https://doi.org/10.1007/s00170-022-09531-3
  • Manroo, S. A., Khan, N. Z., & Ahmad, B. (2022). Study on surface modification and fabrication of surface composites of magnesium alloys by friction stir processing: a review. Journal of Engineering and Applied Science, 69(1), 25. https://doi.org/10.1186/s44147-022-00073-9
  • Kumar, A., Singh, V. P., Nirala, A., Singh, R. C., Chaudhary, R., Mourad, A.-H. I., Sahoo, B. K., & Kumar, D. (2023). Influence of tool rotational speed on mechanical and corrosion behaviour of friction stir processed AZ31/Al2O3 nanocomposite. Journal of Magnesium and Alloys, 11(7), 2585–2599. https://doi.org/10.1016/j.jma.2023.06.012
  • Muralidhara, B., Babu, S. K., & Suresha, B. (2020). Studies on mechanical, thermal and tribological properties of carbon fibre-reinforced boron nitride-filled epoxy composites. High Performance Polymers, 32(9), 1061–1081. https://doi.org/10.1177/0954008320929396
  • Vasanthkumar, P., Balasundaram, R., & Senthilkumar, N. (2022). Sliding-friction wear of a seashell particulate reinforced polymer matrix composite: modeling and optimization through RSM and Grey Wolf optimizer. Transactions of the Canadian Society for Mechanical Engineering, 46(2), 329–345. https://doi.org/10.1139/tcsme-2021-0139
  • Bhojan, A., Senthilkumar, N., & Deepanraj, B. (2016). Parametric Influence of Friction Stir Welding on Cast Al6061/20%SiC/2%MoS2 MMC Mechanical Properties. Applied Mechanics and Materials, 852, 297–303. https://doi.org/10.4028/www.scientific.net/AMM.852.297
  • Wang, R., Xiong, Y., Yang, K., Zhang, T., Zhang, F., Xiong, B., Hao, Y., Zhang, H., Chen, Y., & Tang, J. (2023). Advanced progress on the significant influences of multi-dimensional nanofillers on the tribological performance of coatings. RSC Advances, 13(29), 19981–20022. https://doi.org/10.1039/D3RA01550E
  • Radhika, N., Krishna, S. A., Basak, A. K., & Adediran, A. A. (2024). Microstructure and tribological behaviour of CoCrCuFeTi high entropy alloy reinforced SS304 through friction stir processing. Scientific Reports, 14(1), 3662. https://doi.org/10.1038/s41598-024-54267-7
  • Ostovan, F., Azimifar, I., Toozandehjani, M., Shafiei, E., & Shamshirsaz, M. (2021). Synthesis of ex-situ Al5083 reinforced with mechanically-alloyed CNTs and Fe2O3 nanoparticles using friction stir processing. Journal of Materials Research and Technology, 14, 1670–1681. https://doi.org/10.1016/j.jmrt.2021.07.072
  • Durowaye, S., Sekunowo, O., Bolasodun, B., Oduaran, İ., & Lawal, G. (2019). Mechanical and wear characterisation of quarray tailing reinforced A6063 metal matrix composites. Turkish Journal of Engineering, 3(3), 133–139. https://doi.org/10.31127/tuje.490509
  • Sundara Selvan, S., & Senthilkumar, N. (2018). Dry sliding wear behaviour of surface modified az61 magnesium alloy reinforced with nano titanium dioxide. Journal of the Balkan Tribological Association, 24(3), 429–452.
  • Suresh, R. (2020). Comparative study on dry sliding wear behavior of mono (Al2219/B 4 C) and hybrid (Al2219/B 4 C/Gr) metal matrix composites using statistical technique. Journal of the Mechanical Behavior of Materials, 29(1), 57–68. https://doi.org/10.1515/jmbm-2020-0006
  • Vithal, N. D., Krishna, B. B., & Krishna, M. G. (2021). Impact of dry sliding wear parameters on the wear rate of A7075 based composites reinforced with ZrB2 particulates. Journal of Materials Research and Technology, 14, 174–185. https://doi.org/10.1016/j.jmrt.2021.06.005
  • Sundaraselvan, S., Senthilkumar, N., Tamizharasan, T., & Sait, A. N. (2020). Surface modification of AZ61 Magnesium Alloy with Nano TiO2/Al2O3 using Laser Cladding Technique. Materials Today: Proceedings, 21, 717–721. https://doi.org/10.1016/j.matpr.2019.06.745
  • Liu, C. T., Chang, Y. P., & Yeh, J. W. (2022). Study on friction properties of different abrasive materials and polylactic acid materials. Journal of Physics: Conference Series, 2345(1), 012027. https://doi.org/10.1088/1742-6596/2345/1/012027
  • Subramanian, K., Murugesan, S., Mohan, D. G., & Tomków, J. (2021). Study on Dry Sliding Wear and Friction Behaviour of Al7068/Si3N4/BN Hybrid Composites. Materials, 14(21), 6560. https://doi.org/10.3390/ma14216560
  • Suganeswaran, K., Parameshwaran, R., Mohanraj, T., & Radhika, N. (2021). Influence of secondary phase particles Al 2 O 3 /SiC on the microstructure and tribological characteristics of AA7075-based surface hybrid composites tailored using friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(1), 161–178. https://doi.org/10.1177/0954406220932939
  • Bhandari, R., Biswas, P., Mallik, M., & Mondal, M. K. (2024). Dry and Lubrication Sliding Wear Characteristics and Wear Mechanism Mapping for In Situ Al–25Mg 2 Si Composites. Advanced Engineering Materials, 26(2), 2300845https://doi.org/10.1002/adem.202300845
  • Gunoz, A., Kepir, Y., & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6(1), 34–39. https://doi.org/10.31127/tuje.775536
  • Srivyas, P. D., & Charoo, M. S. (2020). Tribological behavior of aluminum silicon eutectic alloy-based composites under dry and wet sliding for variable load and sliding distance. SN Applied Sciences, 2(10), 1654. https://doi.org/10.1007/s42452-020-03433-3
  • Sabari, K., Muniappan, A., & Singh, M. (2024). Enhancing Microstructural Characteristics and Mechanical Properties in Friction Stir Welding of Thick Magnesium Alloy Plates through Optimization. SAE Technical Paper, 2024-01-5014 https://doi.org/10.4271/2024-01-5014
  • Sathish, T., Kaladgi, A. R. R., Mohanavel, V., Arul, K., Afzal, A., Aabid, A., Baig, M., & Saleh, B. (2021). Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters. Materials, 14(11), 2782. https://doi.org/10.3390/ma14112782
There are 42 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Articles
Authors

N Senthilkumar 0000-0002-2441-1061

Balakrishnan Deepanraj 0000-0001-8986-6692

Feroz Shaik 0000-0002-9174-4819

Vinayagam Nadanakumar 0000-0002-8544-1264

Early Pub Date January 22, 2025
Publication Date
Submission Date August 13, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Senthilkumar, N., Deepanraj, B., Shaik, F., Nadanakumar, V. (2025). Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing. Turkish Journal of Engineering, 9(3), 425-432. https://doi.org/10.31127/tuje.1531603
AMA Senthilkumar N, Deepanraj B, Shaik F, Nadanakumar V. Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing. TUJE. January 2025;9(3):425-432. doi:10.31127/tuje.1531603
Chicago Senthilkumar, N, Balakrishnan Deepanraj, Feroz Shaik, and Vinayagam Nadanakumar. “Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing”. Turkish Journal of Engineering 9, no. 3 (January 2025): 425-32. https://doi.org/10.31127/tuje.1531603.
EndNote Senthilkumar N, Deepanraj B, Shaik F, Nadanakumar V (January 1, 2025) Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing. Turkish Journal of Engineering 9 3 425–432.
IEEE N. Senthilkumar, B. Deepanraj, F. Shaik, and V. Nadanakumar, “Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing”, TUJE, vol. 9, no. 3, pp. 425–432, 2025, doi: 10.31127/tuje.1531603.
ISNAD Senthilkumar, N et al. “Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing”. Turkish Journal of Engineering 9/3 (January 2025), 425-432. https://doi.org/10.31127/tuje.1531603.
JAMA Senthilkumar N, Deepanraj B, Shaik F, Nadanakumar V. Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing. TUJE. 2025;9:425–432.
MLA Senthilkumar, N et al. “Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing”. Turkish Journal of Engineering, vol. 9, no. 3, 2025, pp. 425-32, doi:10.31127/tuje.1531603.
Vancouver Senthilkumar N, Deepanraj B, Shaik F, Nadanakumar V. Wear Studies on Nano Silicon Carbide Particle Strengthened AZ31 Magnesium Nano Surface Composites Developed via Friction Stir Processing. TUJE. 2025;9(3):425-32.
Flag Counter