Research Article
BibTex RIS Cite

Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data

Year 2026, Volume: 10 Issue: 1, 91 - 102
https://doi.org/10.31127/tuje.1702675

Abstract

Traditional methods for 3D coordinate transformation often struggle with complex mathematical computations. This study presents a machine learning approach using Extreme Gradient Boosting (XGBoost) to achieve high-precision coordinate transformations between measurement systems. We developed three specialized XGBoost models (X, Y, Z axes) that learn the transformation rules directly from data, eliminating the need for predefined mathematical models. The framework processed raw coordinate measurements through careful data cleaning and splitting (80% training, 20% testing), intentionally avoiding normalization to preserve transformation relationships. Results demonstrated exceptional transformation accuracy, with R² scores of 0.9999 (X), 0.9996 (Y), and 0.9975 (Z), and RMSE values as low as 0.185 units. Error analysis showed maximum deviations under 1.5 units across all axes, while 3D visualization confirmed the model's ability to maintain geometric relationships during transformation. The independent axis modeling approach proved particularly effective for coordinate system conversions, capturing axis-specific transformation characteristics without cross-contamination. This work establishes XGBoost as a powerful alternative to conventional transformation methods, offering superior accuracy for applications in geodesy, photogrammetry, and CAD systems. Future enhancements could incorporate hybrid models that combine the strengths of parametric transformations with machine learning refinements.

References

  • Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons.‏
  • Anwer, H. A. (2025). Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. International Journal of Engineering and Geosciences, 10(3), 290-302.‏
  • Anwer, H. A., & Hassan, A. (2025). Hydrological dynamics and road infrastructure resilience: A case study of river Nile state, Sudan. Journal of Geography and Cartography, 8(1), 8785.‏
  • Elalwani, E., & Çalışkan, E. B. (2024). Integrating BIM technology in construction for effective knowledge management: case studies and methodological insights. Turkish Journal of Engineering, 8(4), 647-655.‏
  • Unal, M., Yakar, M., & Yildiz, F. (2004, July). Discontinuity surface roughness measurement techniques and the evaluation of digital photogrammetric method. In Proceedings of the 20th international congress for photogrammetry and remote sensing, ISPRS (Vol. 1103, p. 1108).‏
  • Elhag, A., & Hassan, A. (2024). Gis applications in land management: Enhancing flood risk assessment and village replanning. Journal of Karary University for Engineering and Science.‏
  • Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., & Xue, X. (2021). Progressive coordinate transforms for monocular 3d object detection. Advances in Neural Information Processing Systems, 34, 13364-13377.‏
  • Iliffe, J. (2000). Datums and map projections for remote sensing, GIS, and surveying. CRC Press.
  • Nsiah Ababio, A. (2024). Modernization of the vertical geodetic datum at the Hong Kong territories.‏
  • Ghilani, C. D. (2017). Adjustment computations: spatial data analysis. John Wiley & Sons.‏
  • Hassan, A., Mustafa, E. K., Mahama, Y., Damos, M. A., Jiang, Z., & Zhang, L. (2020). Analytical study of 3d transformation parameters between wgs84 and adindan datum systems in sudan. Arabian Journal for Science and Engineering, 45(1), 351-365.‏
  • Musayev, İ., & Gojamanov, M. (2021). Geodetic Errors Arising from the Differences Between Sk-42 and Wgs-84 Coordinate Systems when Implemented in Modern Weapons Systems. Konya Journal of Engineering Sciences, 9(2), 306-313.‏
  • Bhavsar, C., Gadhavi, M., & Shaikh, M. (2025). Impact Assessment of Land Use Change Detection on the Environment of Ahmedabad District, Gujarat, India using Supervised Classification In GIS. Turkish Journal of Engineering, 9(4), 823-830.‏
  • Ruffhead, A. C., & Whiting, B. M. (2020). Introduction to geodetic datum transformations and their reversibility. School of Architecture, Computing and Engineering.‏
  • Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying. John Wiley & Sons.
  • Badekas, J. (1969). Investigations related to the establishment of a world geodetic system. Ohio State University. Division of Geodetic Science.‏
  • Kotsakis, C., & Sideris, M. G. (1999). On the adjustment of combined GPS/levelling/geoid networks. Journal of geodesy, 73(8), 412-421.‏
  • Liu, W. L., & Li, Y. W. (2017). A novel method for improving the accuracy of coordinate transformation in multiple measurement systems. Measurement Science and Technology, 28(9), 095002.‏
  • Wondatir, M., & Tesfaye, G. (2023). Determination of WGS84 to Adindan datum transformation parameters and its effect for geospatial applications: a case of Addis Ababa City, Ethiopia. Applied Geomatics, 15(1), 141-160.‏
  • Ojo, O. O., & Oboro, O. A. (2024). Stepwise double-sided friction stir welding: an alternative for root defect mitigation in aluminium plates with lower gauge numbers. Turkish Journal of Engineering, 8(4), 611-618.‏
  • Mohammed, A. E. M., & Mohammed, N. Z. (2013). WGS84 to Adindan-Sudan datum transformation manipulated by ITRF96. International Journal of Multidisciplinary Sciences and Engineering, 4(5), 60-64.‏
  • Mohamed, T. (2024). The Prediction of Flood Monitoring for Image Satellite Using Artificial Neural Networks. Journal of Karary University for Engineering and Science.‏
  • Wu, Y. C., & Feng, J. W. (2018). Development and application of artificial neural network. Wireless Personal Communications, 102(2), 1645-1656.‏
  • Fombuwing, B., & Ersoy, N. T. (2024). Modeling electricity generation and consumption in cameroon. Turkish Journal of Engineering, 8(4), 593-602.‏
  • Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications.‏
  • Grepcka, A., Peri, L., & Halebi, S. (2024). The development of the Albanian wood industry and the correlation of the main strategic business factors. Advanced Engineering Science, 4, 141-149.‏
  • Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).‏
  • Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).‏
  • Kumaş, E., & Aslan, D. (2025). A case study: Making decisions for sustainable university campus planning using GeoAI. International Journal of Engineering and Geosciences, 10(1), 22-35.‏
  • Alshboul, O., Shehadeh, A., Almasabha, G., & Almuflih, A. S. (2022). Extreme gradient boosting-based machine learning approach for green building cost prediction. Sustainability, 14(11), 6651.‏
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34(6), 23-29..‏
  • Anwer, H. A., Hassan, A., & Anwer, G. (2025). Satellite-Based Analysis of Air Pollution Trends in Khartoum before and After the Conolict. Ann Civil Environ Eng, 9(1), 001-011.‏
  • Ahmed, A. E. M. (2013). Common Point Coordinates Transformation Parameters Between Adindan (Sudan) New Ellipsoid And The World Geodetic System 1984 (GPS Datum) Coordinates Compared With Parameters Of The American National Imagery And Mapping Agency (NIMA). International Journal of Advanced Research in Engineering and Applied Sciences, 2(9), 26-39.‏
  • Anwer, H. A. (2025). Identifying Suitable Dam Locations in Al Dinder: Integrating GIS, Remote Sensing, and Hydrological Factors. International Journal of Engineering and Geosciences, 10(3), 290-302.
There are 34 citations in total.

Details

Primary Language English
Subjects Geomatic Engineering (Other)
Journal Section Research Article
Authors

Hossamaldeen Mohamed 0009-0008-4128-9329

Abubakr Hassan 0000-0003-1998-4559

Maab Kamaleldeen 0009-0009-1225-8029

Early Pub Date October 31, 2025
Publication Date December 1, 2025
Submission Date May 20, 2025
Acceptance Date October 28, 2025
Published in Issue Year 2026 Volume: 10 Issue: 1

Cite

APA Mohamed, H., Hassan, A., & Kamaleldeen, M. (2025). Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data. Turkish Journal of Engineering, 10(1), 91-102. https://doi.org/10.31127/tuje.1702675
AMA Mohamed H, Hassan A, Kamaleldeen M. Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data. TUJE. October 2025;10(1):91-102. doi:10.31127/tuje.1702675
Chicago Mohamed, Hossamaldeen, Abubakr Hassan, and Maab Kamaleldeen. “Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data”. Turkish Journal of Engineering 10, no. 1 (October 2025): 91-102. https://doi.org/10.31127/tuje.1702675.
EndNote Mohamed H, Hassan A, Kamaleldeen M (October 1, 2025) Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data. Turkish Journal of Engineering 10 1 91–102.
IEEE H. Mohamed, A. Hassan, and M. Kamaleldeen, “Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data”, TUJE, vol. 10, no. 1, pp. 91–102, 2025, doi: 10.31127/tuje.1702675.
ISNAD Mohamed, Hossamaldeen et al. “Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data”. Turkish Journal of Engineering 10/1 (October2025), 91-102. https://doi.org/10.31127/tuje.1702675.
JAMA Mohamed H, Hassan A, Kamaleldeen M. Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data. TUJE. 2025;10:91–102.
MLA Mohamed, Hossamaldeen et al. “Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data”. Turkish Journal of Engineering, vol. 10, no. 1, 2025, pp. 91-102, doi:10.31127/tuje.1702675.
Vancouver Mohamed H, Hassan A, Kamaleldeen M. Hight-Precision 3D Coordinate Transformation Using XGBoost Regression: A Machine Learning Approach for Geospatial Data. TUJE. 2025;10(1):91-102.
Flag Counter