Research Article
BibTex RIS Cite

Comparative seasonal analysis of IC50, total antioxidant capacity, phenolics, and flavonoids of some vegetable plants from the aquaponics system

Year 2024, , 11 - 25, 30.06.2024
https://doi.org/10.53663/turjfas.1420984

Abstract

Seasonal factors such as temperature, solar UV-light intensity, and daylight length can induce changes in the water quality properties and, hence, the nutritional compositions of plants. This comparative study was carried out for the consecutive four (4) seasons (winter, spring, summer, and autumn) to determine the influence of seasonal variations on the 50% inhibitory concentration (IC50), total antioxidant capacity (TAC), total phenolics content (TPC), and total flavonoids content (TPC) of the red chili fruit (RCF), red tomato fruit (RTF), green leafy spinach (GLS), and green leafy lettuce (GLL) collected from a coupled commercial aquaponics system. The IC50, TAC, TPC, and TFC concentration levels indicated a significant (P<0.05) difference in the summer compared with the winter, spring, and autumn. The RCF extract indicated the lowest IC50, thus greater scavenging power in comparison to RTF, GLS, and GLL extracts. Similarly, the RCF showed the highest TAC and TPC, while the GLL showed the highest TFC. In this study, variations in seasons have induced changes in the IC50, TAC, TPC, and TFC concentration levels of the RCF, RTF, GLS, and GLL extracts.

Ethical Statement

The author declares no conflict of interest

Supporting Institution

Rhodes University, South Africa

Thanks

Thanks to the Department of Biochemistry and Microbiology, Rhodes University, South Africa, and John Davies, the aquaponics system proprietor.

References

  • Agarwal, I. A., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163(6), 739–744.
  • Akiode, S. O., Fadeyi, A. E., Ibi, A. A., & Hassan, M. B. (2021). Effect of seasonal changes on the quantity of secondary metabolites from neem and eucalyptus plants in North Central Nigeria. World Journal of Biology Pharmacy and Health Sciences, 7(2), 043–052. https://doi.org/10.30574/wjbphs.2021.7.2.0080
  • Al-Mamary, M. A. (2002). Antioxidant activity of commonly consumed vegetables in Yemen. Malaysian Journal of Nutrition, 8(2), 179–189.
  • Amalfitano, C. A., Del Vacchio, L. D. V., Somma, S., Cuciniello, A. C., & Caruso G. (2017). Effects of cultural cycles and nutrient solution electrical conductivity on plant growth, yield, and fruit quality of 'Friariello’ pepper grown in hydroponics. Horticultural Science, 44, 91–98. https://doi.org/10.17221/172/2015-HORTSC
  • Ananthan, R. Subash, K., & Longvah, T. (2014). Assessment of nutrient composition and capsaicinoid content of some red chilies. International Conference on Food and Nutrition Technology, 72, 1–4. https://doi.org/10.7763/IPCBEE. 2014. V72. 1
  • Blainski, A., Lopes, G. C., & Palazzo de Mello, J. C. (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852–6865. https://doi.org/10.3390/molecules18066852
  • Braglia, R., Costa, P., Di Marco, G., D'Agostino, A., Redi, E. L., Scuderi, F., Gismondi, A., & Canini, A. (2021). Phytochemicals and quality level of food plants grown in an aquaponics system. Journal of the Science of Food and Agriculture, 102, 844-850. https://doi.org/10.1002/jsfa.11420
  • Brennan, P., Fortes, C., Butler, J., Agudo, A., Benhamou, S., Darby, S., Gerken, M., Jockel, K. H., Kreuzer, M., Mallone, S., Nyberg, F., Pohlabeln, H., Ferro, G., & Boffetta, P. (2000). A multicenter case-control study of diet and lung cancer among non-smokers. Cancer Causes Control, 11(1), 49–58. https://doi.org/10.1023/A:1008909519435
  • Burns, J., Paul, D., Fraser, P., & Bramley, M. (2003). Identification and quantification of carotenoids, tocopherols, and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry, 62(6), 939–947. https://doi.org/10.1016/S0031-9422(02)00710-0
  • Caruso, G., Villari, G., Melchionna, G., & Conti, S. (2011). Effects of cultural cycles and nutrient solutions on plant growth, yield, and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Scientia Horticulturae, 129, 479–485. https://doi.org/10.1016/J.SCIENTA.2011.04.020
  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoids content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/ 10.38212/2224-6614.2748
  • Cheng, D. M., Pogrebnyak, N., Kuhn, P., Krueger, C. G., Johnson, W. D., & Raskin, I. (2015). Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One, 9(3), e91571. https://doi.org/10.1371/journal.pone.0091571
  • Cummings, D. E., & Schwartz, M. W. (2003). Genetics and pathophysiology of human obesity. Annual Reviews of Medicine, 54, 453–471. https://doi.org/10.1146/annurev.med.54.101601.152403
  • Djurdjevic L, Gajic G, Kostic O, Jaric S, Pavlovic M, Mitrovic M, Pavlovic P, (2012). Seasonal dynamics of allelopathically significant phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil. Flora-Morphology, Distribution, Functional Ecology of Plants, 207, 812–820. https://doi.org/10.1016/j.flora.2012.09.006
  • Garces-Claver, A., Arnedo-Andres, M. S., Abadia, J., GilOrtega, R., & Alvarez-Fernandez, A. (2006). Determination of capsaicin and dihydro-capsaicin in capsicum fruits by liquid chromatography-electrospray/time-of-flight mass spectrometry. Journal of Agricultural Food Chemistry, 54(25), 9303–9311. https://doi.org/10.1021/jf0620261
  • Goddek, S., Joyce, A., Kotzen, B., & Dos-Santos, M. (2019). Aquaponics and global food challenges. In aquaponics food production systems, edn., Springer Publishers, pp. 3–18. https://doi.org/10.1007/978-3-030-15943-6_1
  • Huang, W., Bont, Z., Hervé, M. R., Robert, C. A. M., & Erb, M. (2020). Impact of seasonal and temperature-dependent variation in root defense metabolites on herbivore preference in Taraxacum officinale. Journal of Chemical Ecology, 46, 63–75. https://doi.org/10.1007/s10886-019-01126-9
  • Hwang, E., Stacewicz-Sapuntzaki, M., & Bowen, P. E. (2012). Effects of heat treatment on the carotenoid and tocopherol composition of tomato. Journal of Food Science, 77(10), C1109–1114. https://doi.org/10.1111/j.1750-3841.2012.02909.x
  • Jamloki, A., Bhattacharyya, M., Nautiyal, M. C. & Heliyon, B. P., (2021). Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production. Heliyon, 7(8), e0770. https://doi.org/10.1016/j.heliyon.2021.e07709
  • Jayanthy, A., Prakash, K. U., & Remashree, A. B. (2013). Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (l) dc. - an Ayurvedic medicinal plant. International Journal of Herbal Medicine, 1, 34-37.
  • Kalita, D., & Jayanty, S. S. (2014). Comparison of polyphenol content and antioxidant capacity of colored potato tubers, pomegranate, and blueberries. Journal of Food Processing Technology, 5(8), 1–7. https://doi.org/10.4172/2157-7110.1000358
  • Kamath, S. D., Arunkumar, D., Aninash, N. G., & Samsuddin, S. (2015). Determination of total phenolic content and total antioxidant activity in locally food stuffs in Moodbiri, Karnataka, India. Advances in Applied Science Research, 6(6), 99–102.
  • Kawaoka, T., & Funabashi, M. (2020). Secondary metabolite differences between naturally grown and conventionally coarse green tea. Agriculture, 10, 632. https://doi.org/10.3390/agriculture10120632
  • Khanam, U. K., Oba, S., Yanase, E., & Murakam, Y. (2012). Phenolic acids, flavonoids, and total antioxidant capacity of selected vegetables. Journal of Functional Science, 4, 979–987. https://doi.org/10.1016/j.jff.2012.07.006
  • Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321–326. https://doi.org/10.1016/S0308-8146(02)00423-5
  • Kumar, D., Kumar, S., & Shekhar, C. (2020). Nutritional components in green leafy vegetables: A review. Journal of Pharmacognosy and Phytochemistry, 9(5), 2498–2502.
  • Lee, J. H., Felipe, P., Yang, Y. H., Kim, M. Y., Kwon, O. Y., Sok, D. E., Kim, H. C., & Kim, M. R., (2009). Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa L.) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. British Journal of Nutrition, 101(8), 1246–1254. https://doi.org/ 10.1017/S0007114508073650
  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2
  • Ling, S. C., & Suhaila, M. (2001). Alpha-tocopherol content in 62 edible tropical plants. Journal of Agricultural Food Chemistry, 49(6), 3101–3105. https://doi.org/doi: 10.1021/jf000891u
  • Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., & Kendall, P. (2007). Total phenolic content and DPPH˙ radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT - Food Science and Technology, 40(3), 552–557. https://doi.org/10.1016/j.lwt.2005.09.007
  • Llorach, R., Martínez-Sánchez, A., Tomás-Barberán, F. A., Gil, M. I., & Ferreres, F. (2008). Characterization of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108(3), 1028–1038. https://doi.org/10.1016/j.foodchem.2007.11.032
  • Marisa, M. W., Cynthia, A. W., & Paul, W. B. (2001). Variation in β-carotene and total carotenoid content in fruits of capsicum. HortScience, 36(4), 746–749. https://doi.org/10.21273/HORTSCI.36.4.746
  • Martinez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene, and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of Food Science and Agriculture, 82, 323–330. https://doi.org/10.1002/jsfa.1035
  • Medina, M., Jayachandran, K., Bhat, M. G., & Deoraj, A. (2016). Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquaculture International, 4(1), 415–427. https://doi.org/10.1007/s10499-015-9934-3
  • Mohiuddin, A. K. (2019). Chemistry of secondary metabolites. Annals of Clinical Toxicology, 2(1), 1014.
  • Naoki M., Hiromi Y., & Yoshiyuki M. (2010). Spinach and health: Anticancer effect. Bioactive Foods in Promoting Health, pp. 393-405. https://doi.org/10.1016/B978-0-12-374628-3.00026-8
  • Nathan S. B. & John L. I. (2015). Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutrition Research, 5(8), 643–654. https://doi.org/10.1016/j.nutres.2015.06.001
  • Nchabeleng, L., Mudau, F. N., & Mariga, I. K. (2012). Effects of chemical composition of wild bush tea (Athrixia phylicoides DC.) growing at locations differing in altitude, climate and edaphic factors. Journal of Medicinal Plant Research, 6, 1662-1666. https://doi.org/10.5897/JMPR11.1453
  • Nida, R. B., Ronald, E. T., & John, D. M. (1999). Culture and age difference in the production of allelochemicals by Secale cereale. Weed Science, 47(5), 481–485. https://doi.org/10.1017/500431745000921
  • Pattillo, D. A. (2017). An overview of aquaponic systems: hydroponic components. North Central Regional Aquacultural Centre-Technical Bulletin, 19, 1–10.
  • Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G. C., Scopa, A., Sofo, A., Marzocco, S., Adesso, S., Novellino, T., & Campiglia, P. (2015). Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chemistry, 167, 153–161. https://doi.org/10.1016/j.foodchem.2014.06.105
  • Peryeen, R., Ansar, H., Suleria, R., Muhammad, F., Masood, A., Butt, S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum): Carotenoid and lycopene chemistry, metabolism, absorption, nutrition, and allied health claims: A comprehensive review. Critical Reviews in Food Science and Nutrition, 55(7), 919–929. https://doi.org/10.1080/10408398.2012.657809
  • Rakocy, J. E., Michael, P., Masser, J., & Losordo, T. (2006). Recirculating aquaculture tank production systems: Aquaponics – integrating fish and plant culture. Southern Regional. Stoneville, Mississippi. Southern regional aquacultural research center Publication. No. 454.
  • Ramaiyan, B., Kour, J., Nayik, G. A., Anand, N., & Alam, M. S. (2020). Spinach (Spinacia oleracea L.). In: Nayik, G. A., Gull, A. (edn.), Antioxidants in Vegetables and Nuts - Properties and Health Benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_8
  • Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265. tps://doi.org/10.1038/srep29265
  • Singh, C., Upadhyay, R., & Tiwari, K. N. (2022). Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L. Physiology and Molecular Biology of Plants, 28(1), 223–249. https://doi.org/10.1007/s12298-021-01120-0
  • Umamaheswari, M., & Chatterjee, T. K. (2008). In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. African Journal of Traditional, Complementary and Alternative Medicine, 5(1), 61–73.
  • US EPA (2017). Climatic impacts on agriculture and food supply. 19january2017snaphot.epa.gov/climate-impacts/climate-impacts-agriculture and-food-supply.html (accessed 14 October 2023).
  • Usano-Alemany, J., Pala-Paul, J., & Herraize-Penalver, D. (2014). Temperature stress causes different profiles of volatile compounds of Salvia iavandulifolia vahl. Biochemical Systematics and Ecology, 54, 166-171. https://doi.org/10.1016/j.bse.2014.02.004
  • USDA (2019). National nutrient database for standard reference. Legacy Release 28. USDA, Washington, DC.
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in Strawberry. Journal of Agricultural Food Chemistry, 49(10), 4977–4982. https://doi.org/doi: 10.1021/jf0106244
  • Wu, J., Cho, E., Willett, W. C., Sastry, S. M., & Schaumberg, D. A. (2015). Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmology, 133(12), 1415–1424. https://doi.org/10.1001/jamaophthalmol.2015.3590
  • Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3, 10-14.
Year 2024, , 11 - 25, 30.06.2024
https://doi.org/10.53663/turjfas.1420984

Abstract

References

  • Agarwal, I. A., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163(6), 739–744.
  • Akiode, S. O., Fadeyi, A. E., Ibi, A. A., & Hassan, M. B. (2021). Effect of seasonal changes on the quantity of secondary metabolites from neem and eucalyptus plants in North Central Nigeria. World Journal of Biology Pharmacy and Health Sciences, 7(2), 043–052. https://doi.org/10.30574/wjbphs.2021.7.2.0080
  • Al-Mamary, M. A. (2002). Antioxidant activity of commonly consumed vegetables in Yemen. Malaysian Journal of Nutrition, 8(2), 179–189.
  • Amalfitano, C. A., Del Vacchio, L. D. V., Somma, S., Cuciniello, A. C., & Caruso G. (2017). Effects of cultural cycles and nutrient solution electrical conductivity on plant growth, yield, and fruit quality of 'Friariello’ pepper grown in hydroponics. Horticultural Science, 44, 91–98. https://doi.org/10.17221/172/2015-HORTSC
  • Ananthan, R. Subash, K., & Longvah, T. (2014). Assessment of nutrient composition and capsaicinoid content of some red chilies. International Conference on Food and Nutrition Technology, 72, 1–4. https://doi.org/10.7763/IPCBEE. 2014. V72. 1
  • Blainski, A., Lopes, G. C., & Palazzo de Mello, J. C. (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules, 18(6), 6852–6865. https://doi.org/10.3390/molecules18066852
  • Braglia, R., Costa, P., Di Marco, G., D'Agostino, A., Redi, E. L., Scuderi, F., Gismondi, A., & Canini, A. (2021). Phytochemicals and quality level of food plants grown in an aquaponics system. Journal of the Science of Food and Agriculture, 102, 844-850. https://doi.org/10.1002/jsfa.11420
  • Brennan, P., Fortes, C., Butler, J., Agudo, A., Benhamou, S., Darby, S., Gerken, M., Jockel, K. H., Kreuzer, M., Mallone, S., Nyberg, F., Pohlabeln, H., Ferro, G., & Boffetta, P. (2000). A multicenter case-control study of diet and lung cancer among non-smokers. Cancer Causes Control, 11(1), 49–58. https://doi.org/10.1023/A:1008909519435
  • Burns, J., Paul, D., Fraser, P., & Bramley, M. (2003). Identification and quantification of carotenoids, tocopherols, and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry, 62(6), 939–947. https://doi.org/10.1016/S0031-9422(02)00710-0
  • Caruso, G., Villari, G., Melchionna, G., & Conti, S. (2011). Effects of cultural cycles and nutrient solutions on plant growth, yield, and fruit quality of alpine strawberry (Fragaria vesca L.) grown in hydroponics. Scientia Horticulturae, 129, 479–485. https://doi.org/10.1016/J.SCIENTA.2011.04.020
  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoids content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/ 10.38212/2224-6614.2748
  • Cheng, D. M., Pogrebnyak, N., Kuhn, P., Krueger, C. G., Johnson, W. D., & Raskin, I. (2015). Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties. PLoS One, 9(3), e91571. https://doi.org/10.1371/journal.pone.0091571
  • Cummings, D. E., & Schwartz, M. W. (2003). Genetics and pathophysiology of human obesity. Annual Reviews of Medicine, 54, 453–471. https://doi.org/10.1146/annurev.med.54.101601.152403
  • Djurdjevic L, Gajic G, Kostic O, Jaric S, Pavlovic M, Mitrovic M, Pavlovic P, (2012). Seasonal dynamics of allelopathically significant phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil. Flora-Morphology, Distribution, Functional Ecology of Plants, 207, 812–820. https://doi.org/10.1016/j.flora.2012.09.006
  • Garces-Claver, A., Arnedo-Andres, M. S., Abadia, J., GilOrtega, R., & Alvarez-Fernandez, A. (2006). Determination of capsaicin and dihydro-capsaicin in capsicum fruits by liquid chromatography-electrospray/time-of-flight mass spectrometry. Journal of Agricultural Food Chemistry, 54(25), 9303–9311. https://doi.org/10.1021/jf0620261
  • Goddek, S., Joyce, A., Kotzen, B., & Dos-Santos, M. (2019). Aquaponics and global food challenges. In aquaponics food production systems, edn., Springer Publishers, pp. 3–18. https://doi.org/10.1007/978-3-030-15943-6_1
  • Huang, W., Bont, Z., Hervé, M. R., Robert, C. A. M., & Erb, M. (2020). Impact of seasonal and temperature-dependent variation in root defense metabolites on herbivore preference in Taraxacum officinale. Journal of Chemical Ecology, 46, 63–75. https://doi.org/10.1007/s10886-019-01126-9
  • Hwang, E., Stacewicz-Sapuntzaki, M., & Bowen, P. E. (2012). Effects of heat treatment on the carotenoid and tocopherol composition of tomato. Journal of Food Science, 77(10), C1109–1114. https://doi.org/10.1111/j.1750-3841.2012.02909.x
  • Jamloki, A., Bhattacharyya, M., Nautiyal, M. C. & Heliyon, B. P., (2021). Elucidating the relevance of high temperature and elevated CO2 in plant secondary metabolites (PSMs) production. Heliyon, 7(8), e0770. https://doi.org/10.1016/j.heliyon.2021.e07709
  • Jayanthy, A., Prakash, K. U., & Remashree, A. B. (2013). Seasonal and geographical variations in cellular characters and chemical contents in Desmodium gangeticum (l) dc. - an Ayurvedic medicinal plant. International Journal of Herbal Medicine, 1, 34-37.
  • Kalita, D., & Jayanty, S. S. (2014). Comparison of polyphenol content and antioxidant capacity of colored potato tubers, pomegranate, and blueberries. Journal of Food Processing Technology, 5(8), 1–7. https://doi.org/10.4172/2157-7110.1000358
  • Kamath, S. D., Arunkumar, D., Aninash, N. G., & Samsuddin, S. (2015). Determination of total phenolic content and total antioxidant activity in locally food stuffs in Moodbiri, Karnataka, India. Advances in Applied Science Research, 6(6), 99–102.
  • Kawaoka, T., & Funabashi, M. (2020). Secondary metabolite differences between naturally grown and conventionally coarse green tea. Agriculture, 10, 632. https://doi.org/10.3390/agriculture10120632
  • Khanam, U. K., Oba, S., Yanase, E., & Murakam, Y. (2012). Phenolic acids, flavonoids, and total antioxidant capacity of selected vegetables. Journal of Functional Science, 4, 979–987. https://doi.org/10.1016/j.jff.2012.07.006
  • Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321–326. https://doi.org/10.1016/S0308-8146(02)00423-5
  • Kumar, D., Kumar, S., & Shekhar, C. (2020). Nutritional components in green leafy vegetables: A review. Journal of Pharmacognosy and Phytochemistry, 9(5), 2498–2502.
  • Lee, J. H., Felipe, P., Yang, Y. H., Kim, M. Y., Kwon, O. Y., Sok, D. E., Kim, H. C., & Kim, M. R., (2009). Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa L.) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet. British Journal of Nutrition, 101(8), 1246–1254. https://doi.org/ 10.1017/S0007114508073650
  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2
  • Ling, S. C., & Suhaila, M. (2001). Alpha-tocopherol content in 62 edible tropical plants. Journal of Agricultural Food Chemistry, 49(6), 3101–3105. https://doi.org/doi: 10.1021/jf000891u
  • Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., & Kendall, P. (2007). Total phenolic content and DPPH˙ radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT - Food Science and Technology, 40(3), 552–557. https://doi.org/10.1016/j.lwt.2005.09.007
  • Llorach, R., Martínez-Sánchez, A., Tomás-Barberán, F. A., Gil, M. I., & Ferreres, F. (2008). Characterization of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108(3), 1028–1038. https://doi.org/10.1016/j.foodchem.2007.11.032
  • Marisa, M. W., Cynthia, A. W., & Paul, W. B. (2001). Variation in β-carotene and total carotenoid content in fruits of capsicum. HortScience, 36(4), 746–749. https://doi.org/10.21273/HORTSCI.36.4.746
  • Martinez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene, and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of Food Science and Agriculture, 82, 323–330. https://doi.org/10.1002/jsfa.1035
  • Medina, M., Jayachandran, K., Bhat, M. G., & Deoraj, A. (2016). Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquaculture International, 4(1), 415–427. https://doi.org/10.1007/s10499-015-9934-3
  • Mohiuddin, A. K. (2019). Chemistry of secondary metabolites. Annals of Clinical Toxicology, 2(1), 1014.
  • Naoki M., Hiromi Y., & Yoshiyuki M. (2010). Spinach and health: Anticancer effect. Bioactive Foods in Promoting Health, pp. 393-405. https://doi.org/10.1016/B978-0-12-374628-3.00026-8
  • Nathan S. B. & John L. I. (2015). Inorganic nitrite and nitrate: evidence to support consideration as dietary nutrients. Nutrition Research, 5(8), 643–654. https://doi.org/10.1016/j.nutres.2015.06.001
  • Nchabeleng, L., Mudau, F. N., & Mariga, I. K. (2012). Effects of chemical composition of wild bush tea (Athrixia phylicoides DC.) growing at locations differing in altitude, climate and edaphic factors. Journal of Medicinal Plant Research, 6, 1662-1666. https://doi.org/10.5897/JMPR11.1453
  • Nida, R. B., Ronald, E. T., & John, D. M. (1999). Culture and age difference in the production of allelochemicals by Secale cereale. Weed Science, 47(5), 481–485. https://doi.org/10.1017/500431745000921
  • Pattillo, D. A. (2017). An overview of aquaponic systems: hydroponic components. North Central Regional Aquacultural Centre-Technical Bulletin, 19, 1–10.
  • Pepe, G., Sommella, E., Manfra, M., De Nisco, M., Tenore, G. C., Scopa, A., Sofo, A., Marzocco, S., Adesso, S., Novellino, T., & Campiglia, P. (2015). Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano). Food Chemistry, 167, 153–161. https://doi.org/10.1016/j.foodchem.2014.06.105
  • Peryeen, R., Ansar, H., Suleria, R., Muhammad, F., Masood, A., Butt, S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum): Carotenoid and lycopene chemistry, metabolism, absorption, nutrition, and allied health claims: A comprehensive review. Critical Reviews in Food Science and Nutrition, 55(7), 919–929. https://doi.org/10.1080/10408398.2012.657809
  • Rakocy, J. E., Michael, P., Masser, J., & Losordo, T. (2006). Recirculating aquaculture tank production systems: Aquaponics – integrating fish and plant culture. Southern Regional. Stoneville, Mississippi. Southern regional aquacultural research center Publication. No. 454.
  • Ramaiyan, B., Kour, J., Nayik, G. A., Anand, N., & Alam, M. S. (2020). Spinach (Spinacia oleracea L.). In: Nayik, G. A., Gull, A. (edn.), Antioxidants in Vegetables and Nuts - Properties and Health Benefits. Springer, Singapore. https://doi.org/10.1007/978-981-15-7470-2_8
  • Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265. tps://doi.org/10.1038/srep29265
  • Singh, C., Upadhyay, R., & Tiwari, K. N. (2022). Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L. Physiology and Molecular Biology of Plants, 28(1), 223–249. https://doi.org/10.1007/s12298-021-01120-0
  • Umamaheswari, M., & Chatterjee, T. K. (2008). In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. African Journal of Traditional, Complementary and Alternative Medicine, 5(1), 61–73.
  • US EPA (2017). Climatic impacts on agriculture and food supply. 19january2017snaphot.epa.gov/climate-impacts/climate-impacts-agriculture and-food-supply.html (accessed 14 October 2023).
  • Usano-Alemany, J., Pala-Paul, J., & Herraize-Penalver, D. (2014). Temperature stress causes different profiles of volatile compounds of Salvia iavandulifolia vahl. Biochemical Systematics and Ecology, 54, 166-171. https://doi.org/10.1016/j.bse.2014.02.004
  • USDA (2019). National nutrient database for standard reference. Legacy Release 28. USDA, Washington, DC.
  • Wang, S. Y., & Zheng, W. (2001). Effect of plant growth temperature on antioxidant capacity in Strawberry. Journal of Agricultural Food Chemistry, 49(10), 4977–4982. https://doi.org/doi: 10.1021/jf0106244
  • Wu, J., Cho, E., Willett, W. C., Sastry, S. M., & Schaumberg, D. A. (2015). Intakes of lutein, zeaxanthin, and other carotenoids and age-related macular degeneration during 2 decades of prospective follow-up. JAMA Ophthalmology, 133(12), 1415–1424. https://doi.org/10.1001/jamaophthalmol.2015.3590
  • Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3, 10-14.
There are 53 citations in total.

Details

Primary Language English
Subjects Food Sustainability
Journal Section Research Articles
Authors

Labaran Ibrahim 0000-0003-2618-5931

Publication Date June 30, 2024
Submission Date January 16, 2024
Acceptance Date February 16, 2024
Published in Issue Year 2024

Cite

APA Ibrahim, L. (2024). Comparative seasonal analysis of IC50, total antioxidant capacity, phenolics, and flavonoids of some vegetable plants from the aquaponics system. Turkish Journal of Food and Agriculture Sciences, 6(1), 11-25. https://doi.org/10.53663/turjfas.1420984

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci