Review
BibTex RIS Cite

A new approach to the horse nutrition: Nanoparticles

Year 2024, Volume: 6 Issue: 1, 1 - 10, 30.06.2024
https://doi.org/10.53663/turjfas.1394943

Abstract

There has been a gradual increase in research on alternative feed materials and feed additives in animal nutrition. Since the purpose of animal nutrition is to ensure healthy and sustainable animal production, the primary objective is to ensure that the alternative substances are not only beneficial to disposal of waste, but also to the health and development of the animals. Particularly in horse farming, feeding is based on commercial diets supplemented with some vitamin additives. However, the specific digestive anatomy and physiology of horses create obstacles in the methods, which used to compensate for deficient feedstuffs and nutrients. Nanoparticles, which are widely used especially in human nutrition and discovered in search of alternative sources after various legal regulations in animal nutrition, have not yet opened a field for itself in equine nutrition. In this study, the aspects and possibilities of using nanoparticles, which are frequently used in ruminant and poultry nutrition, in equine nutrition were discussed and the pros and cons of nanoparticles were criticized.

References

  • Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. R., Alghamdi, E. S., Hassan, F. U., & Attia, Y. A. (2021). Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916. http://dx.doi.org/10.3390/ani11071916
  • Adegbeye, M.J., Elghandour, M.M.M., Barbabosa-Pliego, A., Monroy, J.C., Mellado, M., Reddy, P.R.K. & Salem, A.Z.M. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science,78, 29-37. http://dx.doi.org/10.1016/j.jevs.2019.04.001
  • Ahmad, M., Qureshi, S., Maqsood, S., Gani, A., & Masoodi, F. A. (2017). Micro-encapsulation of folic acid using horse chestnut starch and β-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions. Food Hydrocolloids, 66, 154-160. http://dx.doi.org/10.1016/j.foodhyd.2016.11.012
  • Ahmad, M., Ashraf, B., Gani, A., & Gani, A. (2018). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. International Journal of Biological Macromolecules, 109, 435-442. http://dx.doi.org/10.1016/j.ijbiomac.2017.11.122
  • Ajdary, M., Moosavi, M. A., Rahmati, M., Falahati, M., Mahboubi, M., Mandegary, A., ... & Varma, R. S. (2018). Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 8(9), 634. http://dx.doi.org/10.3390/nano8090634
  • Akbari, A. & Wu, J. (2016). Cruciferin nanoparticles: Preparation, characterization and their potential application in delivery of bioactive compounds. Food Hydrocolloids, 54, 107-118. http://dx.doi.org/10.1016/j.foodhyd.2015.09.017
  • Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., & Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME journal, 3(2), 243-251. http://dx.doi.org/10.1038/ismej.2008.86
  • Auger, S., Henry, C., Péchoux, C., Suman, S., Lejal, N., Bertho, N., & Vidic, J. (2018). Exploring multiple effects of Zn0.15Mg0.85O nanoparticles on Bacillus subtilis and macrophages. Scientific Reports, 8(1), 12276. http://dx.doi.org/10.1038/s41598-018-30719-9
  • Bokkers, B.G., van Hoeven-Arentzen, P.H., Bouwmeester, H. & Oomen, A.G. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5(3), 393-405. http://dx.doi.org/10.3109/17435390.2010.519836
  • Boyles, M.S., Ranninger, C., Reischl, R., Rurik, M., Tessadri, R., Kohlbacher, O., Duschl, A. & Huber, C.G. (2016). Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 13, 49. http://dx.doi.org/10.1186/s12989-016-0160-6
  • Bunglavan, S.J., Garg, A.K., Dass, R.S. & Sameer, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2, 36-47.
  • Cholewińska, E., Ognik, K., Fotschki, B., Zduńczyk, Z., & Juśkiewicz, J. (2018). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One, 13(5), e0197083. http://dx.doi.org/10.1371/journal.pone.0197083
  • Cipriano-Salazar, M., Adegbeye, M.J., Elghandour, M.M.Y., Barbabosa-Pilego, A., Mellado, M., Hassan, A. & Salem, A.Z.M. (2019). The dietary components and feeding management as options to offset digestive disturbances in horses. Journal of Equine Veterinary Science,74, 103e10.
  • Deka, J., Paul, A. & Chattopadhyay A. (2012). Modulating enzymatic activity in the presence of gold nanoparticles. RSC Advances, 2, 4736e45.
  • Donato, J. J., Moe, L. A., Converse, B. J., Smart, K. D., Berklein, F. C., McManus, P. S., & Handelsman, J. (2010). Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Applied and Environmental Microbiology, 76(13), 4396-4401. http://dx.doi.org/10.1128/AEM.01763-09
  • Dubey, J.P. & Bauer, C. (2018). A review of Eimeria infections in horses and other equids. Veterinary Parasitology, 256, 58-70.
  • Elghandour, M.M.M., Reddy, P.R.K., Salem, A.Z.M., Reddy, P.P.R., Hyder, I., Barbsbosa-Pliego, A. & Yasaswini, D. (2018). Plant bioactives and extracts as feed additives in horse nutrition. Journal of Equine Veterinary Science, 69: 66e77. http://dx.doi.org/10.1016/j.jevs.2018.06.004
  • Ezhilarasi, P.N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628-647. http://dx.doi.org/10.1007/s11947-012-0944-0
  • Fondevila, M., Herrer, R., Casallas, M.C., Abecia, L. & Ducha, J.J. (2009). Potential use of silver nanoparticles as an additive in animal feeding. Animal Feed Science and Technology, 150(3), 259-269. http://dx.doi.org/10.5772/8509
  • Galland, L. (2013). Functional foods: health effects and clinical applications. Reference Module in Biomedical Sciences Encyclopedia of Human Nutrition (Third Edition), pp. 366-371. https://doi.org/10.1016/B978-0-12-375083-9.00130-6
  • Garcia-Barrasa, J., López-de-Luzuriaga, J.M. & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Central European Journal of Chemistry, 9(1), 7. http://dx.doi.org/10.2478/s11532-010-0124-x
  • Gherbawy, Y.A., Shalaby, I.M., Abd El-sadek, M.S., Elhariry, H.M. & Banaja, A.A. (2013). The antifasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the antifasciolasis drug triclabendazole. International Journal of Molecular Sciences,14, 21887e98.
  • Gomez-Requeni, P., Bedolla-Cazares, F., Montecchia, C., Zorrilla, J., Villian, M., Toledo-Cuevas, E.M. & Canosa, F. (2013). Effects of increasing the dietary lipid levels on the growth performance, body composition and digestive enzyme activities of the teleost pejerrey (Odontesthes bonariensis). Aquaculture, 416-417, 15e22. http://dx.doi.org/10.1016/j.aquaculture.2013.08.027
  • Goodwin, D., Davidson, H.P.B. & Harris, P. (2005). Selection and acceptance of flavours in concentrate diets for stabled horses. Applied Animal Behaviour Science,95(3-4), 223-232. http://dx.doi.org/10.1016/j.applanim.2005.04.007
  • Gopi, M., Pearlin, B., Kumar, R.D., Shanmathy, M. & Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. http://dx.doi.org/10.3923/ijp.2017.724.731
  • Ghosh, R., Deka, J., Chattopadhyay, A., & Paul, A. (2013). Conformation aspect in the α-amylase induced agglomeration of citrate-stabilized gold nanoparticles. RSC Advances, 3(45), 23015-23027. http://dx.doi.org/10.1039/c3ra43623c
  • Hameed, H.M. (2021). Physiological role of nanotechnology in animal and poultry nutrition. Egyptian Journal of Veterinary Sciences, 52(3), 311-317. http://dx.doi.org/10.21608/ejvs.2021.73671.1231
  • He, X. & Hwang, H.M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671-681. http://dx.doi.org/10.1016/j.jfda.2016.06.001
  • Hill, E.K. & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8, 26. http://dx.doi.org/10.1186/s40104-017-0157-5
  • Horky, P., Skalickova, S., Baholet, D. & Skladanka, J. (2018). Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8(9), 727. http://dx.doi.org/10.3390/nano8090727
  • Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., & Yang, C. (2002). Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials, 23(15), 3193-3201. http://dx.doi.org/10.1016/S0142-9612(02)00071-6
  • Jiang, X., Jiang, J., Jin, Y., Wang, E. & Dong, S. (2005). Effect of colloidal gold size on the conformational changes of adsorbed cytochrome: probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules, 6, 46e53. http://dx.doi.org/10.1021/bm049744l
  • Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U.A., Arachchige, D.M.B., Kumarasinghe, A.R., Dahanayake, D., Karunaratne, V. & Amaratunga, G.A.J. (2017). Urea-hydroxyapatite nanohy¬brids for slow release of nitrogen. ACS Nano, 11(2), 1214.
  • Malheiros, D.S.P., Daroit, D.J. & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284-292.
  • Mallicote, M., House, A.M. & Sanchez, L.C. (2012). A review of foal diarrhea from birth to weaning. Equine Veterinary Education, 24(4), 206-214.
  • Martin, R.G., McMeniman, N.P., Norton, B.W. & Dowsett, K.F. (1996). Utilization of endogenous and dietary urea in the large intestine of the mature horse. British Journal of Nutrition, 76(3), 373-386. http://dx.doi.org/10.1079/BJN19960043
  • Martin-Rosset, W. & Tisserand, J.L. (2004). Evaluation and expression of protein allowances and protein value of feeds in the MADC system for the performance horse. “In: Nutrition of the Performance Horse: Which System in Europe for Evaluating the Nutritional Requirements?” (ed) Julliand, V. and Martin-Rosset, W. Vol. 111. Wageningen Academic Publishers, EAAP, Wageningen, Netherlands. p103-140.
  • Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., & Dhama, K. (2022). The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly, 42(1), 68-94. http://dx.doi.org/10.1080/01652176.2022.2073399
  • Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Abdul Rahman, N. A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology, 10, 1-22. http://dx.doi.org/10.1186/s40104-019-0368-z
  • Neilson, A. P., Hopf, A. S., Cooper, B. R., Pereira, M. A., Bomser, J. A., & Ferruzzi, M. G. (2007). Catechin degradation with concurrent formation of homo-and heterocatechin dimers during in vitro digestion. Journal of Agricultural and Food Chemistry, 55(22), 8941-8949. http://dx.doi.org/10.1021/jf071645m
  • Nguyen, N. Y. T., Grelling, N., Wetteland, C. L., Rosario, R., & Liu, H. (2018). Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Scientific Reports, 8(1), 16260. http://dx.doi.org/10.1038/s41598-018-34567-5
  • Raguvaran, R., Anju, M. & Balvinder, K.M. (2015). Zinc oxide nanoparticles: Opportunities and challenges in veterinary sciences. Immunome Research, 11(2), 95. http://dx.doi.org/10.4172/1745-7580.1000095
  • Reddy, P.R.K., Kumar, D.S., Rao, E.R., Seshiah, C., Sateesh, K., Reddy, Y.P.K. & Hyder, I. (2019a). Assessment of eco-sustainability vis-à-vis zoo-technical attributes of soybean meal (SBM) replacement with varying levels of coated urea in Nellore sheep (Ovis aries). PLoS One, 14(8), e0220252. https://doi.org/10.1371/journal.pone.0220252
  • Reddy, P.R.K., Kumar, D.S., Rao, E.R., Seshiah, C.V., Sateesh, K., Rao, K.A., Reddy, Y.P.K. & Hyder, I. (2019b). Environmental sustainability assessment of tropical dairy buffalo farming vis-a-vis sustainable feed replacement strategy. Scientific Report, 9(1), 16745. http://dx.doi.org/10.1038/s41598-019-53378-w
  • Reddy, P.R.K., Yasaswini, D., Reddy, P.P.R., Zeineldin, M., Adegbeye, M.J., & Hyder, I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Veterinary World, 13(8), 1685-1696. http://dx.doi.org/10.14202/vetworld.2020.1685-1696
  • Refaie, A., Ghazal, M., Barakat, S., Morsy, W., Meshreky, S. A., Younan, G., & Eisa, W. (2015). Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egyptian Journal of Rabbit Science, 25(1), 39-57. http://dx.doi.org/10.21608/ejrs.2015.46697
  • Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. http://dx.doi.org/10.3390/molecules21070836
  • Salvia-Trujillo, L., Martin-Belloso, O. & McClements, D.J. (2016). Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials, 6(1), 17. http://dx.doi.org/10.3390/nano6010017
  • Saware, K., Aurade, R.M., Jayanthi, P.D.K. & Abbaraju V. (2015). Modulatory effect of citratereduced gold and biosynthesized silver nanoparticles on a-Amylase activity. Journal of Nanoparticles, Article ID 829718, https://doi.org/10.1155/2015/829718
  • Sinatra, S.T., Jankowitz, S.N., Chopra, R.K. & Bhagavan, H.N. (2014). Plasma coenzyme Q10 and tocopherols in thoroughbred racehorses: Effect of coenzyme Q10 supplementation and exercise. Journal of Equine Veterinary Science, 34(2), 265-269. https://doi.org/10.1016/j.jevs.2013.06.001
  • Singh, T., Shukla, S., Kumar, P., Wahla, V. & Bajpai, V.K. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8, 1501. http://dx.doi.org/10.3389/fmicb.2017.01501
  • Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., Fan, S., Chong, Y., Li, R., Ge, C., Chen, C. & Yin, J.J. (2018). Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Applied Materials & Interfaces, 10(10), 8443-8450. http://dx.doi.org/10.1021/acsami.7b17274
  • Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E.E., Saxami, G., Ypsilantis, P., Lampri, E.S., Simopoulos, C., Kotsianidis, I., Galanis, A., Kourkoutas, Y., Dimitrellou, D. & Chlichlia, K. (2016). Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of trail in colon carcinoma cells. PLoS One. 11(2), e0147960. http://dx.doi.org/10.1371/journal.pone.0147960
  • Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., Shah, N. & Tiwari, M. (2018). Mechanism of antibacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology, 9, 1218. http://dx.doi.org/10.3389/fmicb.2018.01218
  • Wang, C., Wang, M. Q., Ye, S. S., Tao, W. J., & Du, Y. J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science, 90(10), 2223-2228. http://dx.doi.org/10.3382/ps.2011-01511
  • Wang, C., Zhang, L., Ying, Z., He, J., Zhou, L., Zhang, L., Zhong, X. & Wang, T. (2018). Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biological Trace Element Research, 185(2), 364-374. http://dx.doi.org/10.1007/s12011-018-1266-5
  • Wolny-Koładka, K.A. & Malina, D.K. (2017). Toxicity assessment of silver nanoparticles against Escherichia coli strains isolated from horse dung. Micro & Nano Letters, 12(10), 772-776. http://dx.doi.org/10.1049/mnl.2017.0129
  • Wu, R., Zhang, H., Pan, J., Zhu, H., Ma, Y., Cui, W., Santos, H.A. & Pan, G. (2016). Spatio-design of multidimensional prickly Zn-doped CuO nanoparticle for efficient bacterial killing. Advanced Materials Interfaces, 3(18), 1600472. http://dx.doi.org/10.1002/admi.201600472
  • Xie, Y., Liu, Y., Yang, J., Liu, Y., Hu, F. & Zhu, K. (2018). Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angewandte Communications Chemie, 57(15), 3958-3962. http://dx.doi.org/10.1002/anie.201712878
  • Zhu, L. X., Zhang, Z. W., Wang, C., Yang, H. W., Jiang, D., Zhang, Q., & Cheng, J. (2007). Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. Journal of Clinical Microbiology, 45(11), 3514-3521. http://dx.doi.org/10.1128/JCM.02340-06
Year 2024, Volume: 6 Issue: 1, 1 - 10, 30.06.2024
https://doi.org/10.53663/turjfas.1394943

Abstract

References

  • Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. R., Alghamdi, E. S., Hassan, F. U., & Attia, Y. A. (2021). Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916. http://dx.doi.org/10.3390/ani11071916
  • Adegbeye, M.J., Elghandour, M.M.M., Barbabosa-Pliego, A., Monroy, J.C., Mellado, M., Reddy, P.R.K. & Salem, A.Z.M. (2019). Nanoparticles in equine nutrition: Mechanism of action and application as feed additives. Journal of Equine Veterinary Science,78, 29-37. http://dx.doi.org/10.1016/j.jevs.2019.04.001
  • Ahmad, M., Qureshi, S., Maqsood, S., Gani, A., & Masoodi, F. A. (2017). Micro-encapsulation of folic acid using horse chestnut starch and β-cyclodextrin: Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions. Food Hydrocolloids, 66, 154-160. http://dx.doi.org/10.1016/j.foodhyd.2016.11.012
  • Ahmad, M., Ashraf, B., Gani, A., & Gani, A. (2018). Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. International Journal of Biological Macromolecules, 109, 435-442. http://dx.doi.org/10.1016/j.ijbiomac.2017.11.122
  • Ajdary, M., Moosavi, M. A., Rahmati, M., Falahati, M., Mahboubi, M., Mandegary, A., ... & Varma, R. S. (2018). Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials, 8(9), 634. http://dx.doi.org/10.3390/nano8090634
  • Akbari, A. & Wu, J. (2016). Cruciferin nanoparticles: Preparation, characterization and their potential application in delivery of bioactive compounds. Food Hydrocolloids, 54, 107-118. http://dx.doi.org/10.1016/j.foodhyd.2015.09.017
  • Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., & Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME journal, 3(2), 243-251. http://dx.doi.org/10.1038/ismej.2008.86
  • Auger, S., Henry, C., Péchoux, C., Suman, S., Lejal, N., Bertho, N., & Vidic, J. (2018). Exploring multiple effects of Zn0.15Mg0.85O nanoparticles on Bacillus subtilis and macrophages. Scientific Reports, 8(1), 12276. http://dx.doi.org/10.1038/s41598-018-30719-9
  • Bokkers, B.G., van Hoeven-Arentzen, P.H., Bouwmeester, H. & Oomen, A.G. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5(3), 393-405. http://dx.doi.org/10.3109/17435390.2010.519836
  • Boyles, M.S., Ranninger, C., Reischl, R., Rurik, M., Tessadri, R., Kohlbacher, O., Duschl, A. & Huber, C.G. (2016). Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 13, 49. http://dx.doi.org/10.1186/s12989-016-0160-6
  • Bunglavan, S.J., Garg, A.K., Dass, R.S. & Sameer, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2, 36-47.
  • Cholewińska, E., Ognik, K., Fotschki, B., Zduńczyk, Z., & Juśkiewicz, J. (2018). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One, 13(5), e0197083. http://dx.doi.org/10.1371/journal.pone.0197083
  • Cipriano-Salazar, M., Adegbeye, M.J., Elghandour, M.M.Y., Barbabosa-Pilego, A., Mellado, M., Hassan, A. & Salem, A.Z.M. (2019). The dietary components and feeding management as options to offset digestive disturbances in horses. Journal of Equine Veterinary Science,74, 103e10.
  • Deka, J., Paul, A. & Chattopadhyay A. (2012). Modulating enzymatic activity in the presence of gold nanoparticles. RSC Advances, 2, 4736e45.
  • Donato, J. J., Moe, L. A., Converse, B. J., Smart, K. D., Berklein, F. C., McManus, P. S., & Handelsman, J. (2010). Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Applied and Environmental Microbiology, 76(13), 4396-4401. http://dx.doi.org/10.1128/AEM.01763-09
  • Dubey, J.P. & Bauer, C. (2018). A review of Eimeria infections in horses and other equids. Veterinary Parasitology, 256, 58-70.
  • Elghandour, M.M.M., Reddy, P.R.K., Salem, A.Z.M., Reddy, P.P.R., Hyder, I., Barbsbosa-Pliego, A. & Yasaswini, D. (2018). Plant bioactives and extracts as feed additives in horse nutrition. Journal of Equine Veterinary Science, 69: 66e77. http://dx.doi.org/10.1016/j.jevs.2018.06.004
  • Ezhilarasi, P.N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628-647. http://dx.doi.org/10.1007/s11947-012-0944-0
  • Fondevila, M., Herrer, R., Casallas, M.C., Abecia, L. & Ducha, J.J. (2009). Potential use of silver nanoparticles as an additive in animal feeding. Animal Feed Science and Technology, 150(3), 259-269. http://dx.doi.org/10.5772/8509
  • Galland, L. (2013). Functional foods: health effects and clinical applications. Reference Module in Biomedical Sciences Encyclopedia of Human Nutrition (Third Edition), pp. 366-371. https://doi.org/10.1016/B978-0-12-375083-9.00130-6
  • Garcia-Barrasa, J., López-de-Luzuriaga, J.M. & Monge, M. (2011). Silver nanoparticles: Synthesis through chemical methods in solution and biomedical applications. Central European Journal of Chemistry, 9(1), 7. http://dx.doi.org/10.2478/s11532-010-0124-x
  • Gherbawy, Y.A., Shalaby, I.M., Abd El-sadek, M.S., Elhariry, H.M. & Banaja, A.A. (2013). The antifasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the antifasciolasis drug triclabendazole. International Journal of Molecular Sciences,14, 21887e98.
  • Gomez-Requeni, P., Bedolla-Cazares, F., Montecchia, C., Zorrilla, J., Villian, M., Toledo-Cuevas, E.M. & Canosa, F. (2013). Effects of increasing the dietary lipid levels on the growth performance, body composition and digestive enzyme activities of the teleost pejerrey (Odontesthes bonariensis). Aquaculture, 416-417, 15e22. http://dx.doi.org/10.1016/j.aquaculture.2013.08.027
  • Goodwin, D., Davidson, H.P.B. & Harris, P. (2005). Selection and acceptance of flavours in concentrate diets for stabled horses. Applied Animal Behaviour Science,95(3-4), 223-232. http://dx.doi.org/10.1016/j.applanim.2005.04.007
  • Gopi, M., Pearlin, B., Kumar, R.D., Shanmathy, M. & Prabakar, G. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724-731. http://dx.doi.org/10.3923/ijp.2017.724.731
  • Ghosh, R., Deka, J., Chattopadhyay, A., & Paul, A. (2013). Conformation aspect in the α-amylase induced agglomeration of citrate-stabilized gold nanoparticles. RSC Advances, 3(45), 23015-23027. http://dx.doi.org/10.1039/c3ra43623c
  • Hameed, H.M. (2021). Physiological role of nanotechnology in animal and poultry nutrition. Egyptian Journal of Veterinary Sciences, 52(3), 311-317. http://dx.doi.org/10.21608/ejvs.2021.73671.1231
  • He, X. & Hwang, H.M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671-681. http://dx.doi.org/10.1016/j.jfda.2016.06.001
  • Hill, E.K. & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8, 26. http://dx.doi.org/10.1186/s40104-017-0157-5
  • Horky, P., Skalickova, S., Baholet, D. & Skladanka, J. (2018). Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials, 8(9), 727. http://dx.doi.org/10.3390/nano8090727
  • Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., & Yang, C. (2002). Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials, 23(15), 3193-3201. http://dx.doi.org/10.1016/S0142-9612(02)00071-6
  • Jiang, X., Jiang, J., Jin, Y., Wang, E. & Dong, S. (2005). Effect of colloidal gold size on the conformational changes of adsorbed cytochrome: probing by circular dichroism, UV-visible, and infrared spectroscopy. Biomacromolecules, 6, 46e53. http://dx.doi.org/10.1021/bm049744l
  • Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U.A., Arachchige, D.M.B., Kumarasinghe, A.R., Dahanayake, D., Karunaratne, V. & Amaratunga, G.A.J. (2017). Urea-hydroxyapatite nanohy¬brids for slow release of nitrogen. ACS Nano, 11(2), 1214.
  • Malheiros, D.S.P., Daroit, D.J. & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284-292.
  • Mallicote, M., House, A.M. & Sanchez, L.C. (2012). A review of foal diarrhea from birth to weaning. Equine Veterinary Education, 24(4), 206-214.
  • Martin, R.G., McMeniman, N.P., Norton, B.W. & Dowsett, K.F. (1996). Utilization of endogenous and dietary urea in the large intestine of the mature horse. British Journal of Nutrition, 76(3), 373-386. http://dx.doi.org/10.1079/BJN19960043
  • Martin-Rosset, W. & Tisserand, J.L. (2004). Evaluation and expression of protein allowances and protein value of feeds in the MADC system for the performance horse. “In: Nutrition of the Performance Horse: Which System in Europe for Evaluating the Nutritional Requirements?” (ed) Julliand, V. and Martin-Rosset, W. Vol. 111. Wageningen Academic Publishers, EAAP, Wageningen, Netherlands. p103-140.
  • Michalak, I., Dziergowska, K., Alagawany, M., Farag, M. R., El-Shall, N. A., Tuli, H. S., & Dhama, K. (2022). The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly, 42(1), 68-94. http://dx.doi.org/10.1080/01652176.2022.2073399
  • Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Abdul Rahman, N. A. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology, 10, 1-22. http://dx.doi.org/10.1186/s40104-019-0368-z
  • Neilson, A. P., Hopf, A. S., Cooper, B. R., Pereira, M. A., Bomser, J. A., & Ferruzzi, M. G. (2007). Catechin degradation with concurrent formation of homo-and heterocatechin dimers during in vitro digestion. Journal of Agricultural and Food Chemistry, 55(22), 8941-8949. http://dx.doi.org/10.1021/jf071645m
  • Nguyen, N. Y. T., Grelling, N., Wetteland, C. L., Rosario, R., & Liu, H. (2018). Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Scientific Reports, 8(1), 16260. http://dx.doi.org/10.1038/s41598-018-34567-5
  • Raguvaran, R., Anju, M. & Balvinder, K.M. (2015). Zinc oxide nanoparticles: Opportunities and challenges in veterinary sciences. Immunome Research, 11(2), 95. http://dx.doi.org/10.4172/1745-7580.1000095
  • Reddy, P.R.K., Kumar, D.S., Rao, E.R., Seshiah, C., Sateesh, K., Reddy, Y.P.K. & Hyder, I. (2019a). Assessment of eco-sustainability vis-à-vis zoo-technical attributes of soybean meal (SBM) replacement with varying levels of coated urea in Nellore sheep (Ovis aries). PLoS One, 14(8), e0220252. https://doi.org/10.1371/journal.pone.0220252
  • Reddy, P.R.K., Kumar, D.S., Rao, E.R., Seshiah, C.V., Sateesh, K., Rao, K.A., Reddy, Y.P.K. & Hyder, I. (2019b). Environmental sustainability assessment of tropical dairy buffalo farming vis-a-vis sustainable feed replacement strategy. Scientific Report, 9(1), 16745. http://dx.doi.org/10.1038/s41598-019-53378-w
  • Reddy, P.R.K., Yasaswini, D., Reddy, P.P.R., Zeineldin, M., Adegbeye, M.J., & Hyder, I. (2020). Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Veterinary World, 13(8), 1685-1696. http://dx.doi.org/10.14202/vetworld.2020.1685-1696
  • Refaie, A., Ghazal, M., Barakat, S., Morsy, W., Meshreky, S. A., Younan, G., & Eisa, W. (2015). Nano-copper as a new growth promoter in the diet of growing New Zealand white rabbits. Egyptian Journal of Rabbit Science, 25(1), 39-57. http://dx.doi.org/10.21608/ejrs.2015.46697
  • Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. http://dx.doi.org/10.3390/molecules21070836
  • Salvia-Trujillo, L., Martin-Belloso, O. & McClements, D.J. (2016). Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials, 6(1), 17. http://dx.doi.org/10.3390/nano6010017
  • Saware, K., Aurade, R.M., Jayanthi, P.D.K. & Abbaraju V. (2015). Modulatory effect of citratereduced gold and biosynthesized silver nanoparticles on a-Amylase activity. Journal of Nanoparticles, Article ID 829718, https://doi.org/10.1155/2015/829718
  • Sinatra, S.T., Jankowitz, S.N., Chopra, R.K. & Bhagavan, H.N. (2014). Plasma coenzyme Q10 and tocopherols in thoroughbred racehorses: Effect of coenzyme Q10 supplementation and exercise. Journal of Equine Veterinary Science, 34(2), 265-269. https://doi.org/10.1016/j.jevs.2013.06.001
  • Singh, T., Shukla, S., Kumar, P., Wahla, V. & Bajpai, V.K. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8, 1501. http://dx.doi.org/10.3389/fmicb.2017.01501
  • Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., Fan, S., Chong, Y., Li, R., Ge, C., Chen, C. & Yin, J.J. (2018). Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Applied Materials & Interfaces, 10(10), 8443-8450. http://dx.doi.org/10.1021/acsami.7b17274
  • Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E.E., Saxami, G., Ypsilantis, P., Lampri, E.S., Simopoulos, C., Kotsianidis, I., Galanis, A., Kourkoutas, Y., Dimitrellou, D. & Chlichlia, K. (2016). Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of trail in colon carcinoma cells. PLoS One. 11(2), e0147960. http://dx.doi.org/10.1371/journal.pone.0147960
  • Tiwari, V., Mishra, N., Gadani, K., Solanki, P.S., Shah, N. & Tiwari, M. (2018). Mechanism of antibacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers in Microbiology, 9, 1218. http://dx.doi.org/10.3389/fmicb.2018.01218
  • Wang, C., Wang, M. Q., Ye, S. S., Tao, W. J., & Du, Y. J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science, 90(10), 2223-2228. http://dx.doi.org/10.3382/ps.2011-01511
  • Wang, C., Zhang, L., Ying, Z., He, J., Zhou, L., Zhang, L., Zhong, X. & Wang, T. (2018). Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biological Trace Element Research, 185(2), 364-374. http://dx.doi.org/10.1007/s12011-018-1266-5
  • Wolny-Koładka, K.A. & Malina, D.K. (2017). Toxicity assessment of silver nanoparticles against Escherichia coli strains isolated from horse dung. Micro & Nano Letters, 12(10), 772-776. http://dx.doi.org/10.1049/mnl.2017.0129
  • Wu, R., Zhang, H., Pan, J., Zhu, H., Ma, Y., Cui, W., Santos, H.A. & Pan, G. (2016). Spatio-design of multidimensional prickly Zn-doped CuO nanoparticle for efficient bacterial killing. Advanced Materials Interfaces, 3(18), 1600472. http://dx.doi.org/10.1002/admi.201600472
  • Xie, Y., Liu, Y., Yang, J., Liu, Y., Hu, F. & Zhu, K. (2018). Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angewandte Communications Chemie, 57(15), 3958-3962. http://dx.doi.org/10.1002/anie.201712878
  • Zhu, L. X., Zhang, Z. W., Wang, C., Yang, H. W., Jiang, D., Zhang, Q., & Cheng, J. (2007). Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. Journal of Clinical Microbiology, 45(11), 3514-3521. http://dx.doi.org/10.1128/JCM.02340-06
There are 60 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Review
Authors

Şevket Evci 0000-0002-1512-3412

Publication Date June 30, 2024
Submission Date November 23, 2023
Acceptance Date January 30, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Evci, Ş. (2024). A new approach to the horse nutrition: Nanoparticles. Turkish Journal of Food and Agriculture Sciences, 6(1), 1-10. https://doi.org/10.53663/turjfas.1394943

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci