Döner Diskli Memede Disk Konum Açısı ve İlerleme Hızının Hacimsel Dağılım Düzgünlüğüne Etkisi
Year 2020,
Volume: 1 Issue: 2, 311 - 323, 31.12.2020
Bahadır Sayıncı
,
Ruçhan Çömlek
,
Mustafa Boydaş
,
Bünyamin Demir
Abstract
Bu araştırmanın amacı, düşük hacimli pestisit uygulamalarında kullanılan döner diskli memede disk konum açısı (0º ve 30º), ilerleme hızı (0.4 ve 1.2 m s-1) ve memeler arası mesafe (0.6, 0.7, 0.8, 0.9, 1.0, 1.1 ve 1.2 m) faktörlerinin hacimsel dağılım düzgünlüğüne olan etkisini incelemek ve optimum işletme parametrelerini belirlemektir. Laboratuvar koşullarında yürütülen püskürtme uygulamalarında doğrusal hareketli bir püskürtme simülatörü kullanılmıştır. Döner diskin devir sayısı 7000 min-1 ve püskürtme yüksekliği 40 cm olarak ayarlanmıştır. Püskürtme sıvısına 1 g l-1 konsantrasyonda Tartrazine karıştırılmıştır. Uygulamalar 30 l ha-1 norm değerinde yapılmıştır. Örnekleme için 35 mm çaplı petri kutusu kullanılmıştır. Araştırma sonuçlarına göre tüm uygulamalarda püskürtme paterni asimetrik görünümde oluşmuştur. 0° ve 30°’lik disk konum açıları için en düşük varyasyon katsayısı (CV) 0.4 m s-1 ilerleme hızında ve 0.7-0.9 m meme aralığında elde edilmiştir. 1.2 m s-1 ilerleme hızında belirlenen CV ortalamaları 0.4 m s-1 hıza göre daha yüksektir. Ancak disk konum açısı 30º olduğunda 1.2 m s-1 ilerleme hızında elde edilen CV ortalamaları 0º’lik konum açısına göre kısmen iyileşmiştir.
Supporting Institution
Bu çalışmada kullanılan püskürtme simülatörünün tasarımı ve imalatı Doç. Dr. Bahadır Sayıncı tarafından yapılmış ve projesi Atatürk Üniversitesi Bilimsel Araştırma Fonu (Proje No: BAP 2013/128) tarafından desteklenmiştir. Deneysel çalışmalar Mersin Üniversitesi Bilimsel Araştırma Fonu (Proje No: 2019-2-AP4-3526) tarafından desteklenmiştir.
Project Number
Atatürk Üniversitesi Bilimsel Araştırma Fonu (Proje No: BAP 2013/128) ve Mersin Üniversitesi Bilimsel Araştırma Fonu (Proje No: 2019-2-AP4-3526)
Thanks
Deneysel çalışmalar Atatürk Üniversitesi Ziraat Fakültesi Tarım Makineleri ve Teknolojileri Mühendisliği Bölümü’nde yapılmıştır.
References
- Azimi AH, Carpenter TG and Reichard DL (1985). Nozzle spray distribution for pesticide application. Transactions of the ASAE, 28 (5): 1410-1414. https://doi.org/10.13031/2013.32451
- Bayat A and Bozdogan NY (2005). An air-assisted spinning disc nozzle and its performance on spray deposition and reduction of drift potential. Crop Protection, 24: 651-960. https://doi.org/10.1016/j.cropro.2005.01.015
- Bode LE, Butler BJ, Pearson SL and Bouse LF (1983). Characteristics of the micromax rotary atomizer. Transactions of the ASAE, 24 (4): 999-1004. https://doi.org/10.13031/2013.34064
- Coates W and Palumbo J (1997). Deposition, off-target movement, and efficacy of CaptureTM and ThiodanTM applied to cantaloupes using five sprayers. Applied Engineering in Agriculture, 13 (2): 181-188. https://doi.org/10.13031/2013.21595
- Çilingir İ and Dursun E (2002). Plant Protection Machinery. Ankara University, Publication Number: 1531, Ankara, p. 263.
- Dante ET and Gupta CP (1991). Deposition studies of an electrostatic spinning disc sprayer. Transactions of the ASAE, 34 (5): 1927-1934. https://doi.org/10.13031/2013.31818
- Gianino C (2006). Measurement of surface tension by the dripping from a needle. Physics Education, 41 (5): 440-445. https://doi.org/10.1088/0031-9120/41/5/010
- Gupta CP and Duc TX (1996). Deposition studies of a hand-held air-assisted electrostatic sprayer. Transactions of the ASAE, 39 (5): 1633-1639. https://doi.org/10.13031/2013.27679
- Ishfaque M, Ashfaq M and Sayyed AH (2005). Effect of power droplet size by hand held spinning disc sprayer. Pakistan Journal of Biological Sciences, 8 (4): 567-570.
- Krishnan P, Williams TH and Kemble LJ (1988). Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. Transactions of the ASAE, 31 (2): 386-389.
- Krishnan P, Gal I, Kemble LJ and Gottfried SL (1993). Effect of sprayer bounce and wind condition on spray pattern displacement of TJ60-8004 fan nozzles. Transactions of the ASAE, 36 (4): 997-1000.
- Lello ER, Patel MN, Matthews GA and Wright DJ (1996). Application technology for entomopathogenic nematodes against foliar pests. Crop Protection, 15 (6): 567-574.
- Mason JM, Matthews GA and Wright DJ (1998). Appraisal of spinning disc technology for the application of entomopathogenic nematodes. Crop Protection, 17 (5): 453-461.
- Mason JM, Matthews GA and Wright DJ 1999. Evaluation of spinning disc technology for the application of entomopathogenic nematodes against a foliar pest. Journal of Invertebrate Pathology, 73: 282-288.
- Matthews GA (2000). Pesticide Application Methods. (3rd ed.). Oxford, England: Blackwell Science 7 Ltd. pp. 432.
- Monaco TJ, Weller SC and Ashton FM (2002). Weed Science: Principles and Practices (4th Edition). John Wiley & Sons, Inc., ISBN: 0-471-37051-7.
- Parnell MA, King WJ, Jones KA, Ketunuti U and Wetchakit D (1999). A comparison of motorised knapsack mistblower, medium volume application, and spinning disk, very low volume application, of Helicoverpa armigera nuclear polyhedrosis virus on cotton in Thailand. Crop Protection, 18: 259-265.
- Piggott SJ, Clayton R, Matthews GA and Wright DJ (2003). Development of a new application apparatus for entomopathogenic nematodes. Pest Management Science, 59: 1344-1348.
- Sayıncı B ve Çömlek R (2015). İlaç tutunma analizleri için pestisitlerin yerine kullanılan sentetik renk maddelerinin geri kazanımı. Tarım Makinaları Bilimi Dergisi, 11(3): 221-229.
- Sayıncı B, Demir B and Açık N (2020). Comparison of spray nozzles in terms of spray coverage and drop distribution uniformity at low volume. Turkish Journal of Agriculture and Forestry, 44(3): 262-270. https://doi.org/10.3906/tar-1905-112
- Sayıncı B, Demir B, Çömlek R and Boydaş MG (2019). Comparison of spray transfer and penetration of different hydraulic nozzles at low application volume. Alinteri Journal of Agriculture Sciences, 34(1): 67-75. https://doi.org/10.28955/alinterizbd.578538
- Shapiro DI, Gouge DH, Piggott SJ and Fife JP (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38: 124-133. https://doi.org/10.1016/j.biocontrol.2005.09.005
- Smith DB, Askew S D, Morris WH, Shaw DR and Boyette M (2000). Droplet size and leaf morphology effects on pesticide spray deposition. Transactions of the ASAE, 43 (2): 255-259. https://doi.org/10.13031/2013.2700
- Spillman JJ (1984). Spray impaction, retention and adhesion: An introduction to basic characteristics. Pesticide Science, 15: 97-106. https://doi.org/10.1002/ps.2780150202
- Wang G, Han Y, Li X, Andaloro J, Chen P, Hoffmann WC, Han X, Chen S and Lan Y (2020). Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of the Total Environment, 737: 1 39793. https://doi.org/10.1016/j.scitotenv.2020.139793
- Wang G, Lan Y, Qi H, Chen P, Hewitt A and Han Y (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75: 1546-1555. https://doi.org/10.1002/ps.5321
- Zhu H, Dorner JW, Rowland DL, Derksen RC and Ozkan HE (2004). Spray penetration into peanut canopies with hydraulic nozzle tips. Biosystems Engineering, 87 (3): 275-273. https://doi.org/10.1016/j.biosystemseng.2003.11.012
- Zhu H, Rowland DL, Dorner JW, Derksen RC and Sorensen RB (2002). Influence of plant structure, orifice size, and nozzle inclination on spray penetration into peanut canopy. Transactions of the ASAE, 45 (5): 1295-1301. https://doi.org/10.13031/2013.11058
- Wang L, Zhang N, Slocombe JW, Thierstein GE and Kuhlman DK (1995). Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Applied Engineering in Agriculture, 11 (1): 51-55. https://doi.org/10.13031/2013.25716
- Womac A, Etheridge R, Seibert A, Hogan D and Ray S (2001). Sprayer speed and venture-nozzle effects on broadcast application uniformity. Transactions of the ASAE, 44 (6): 1437-1444. https://doi.org/10.13031/2013.7011
Effect of Disc Position Angle and Spraying Speed on Volumetric Distribution Uniformity of Spinning Disc Nozzle
Year 2020,
Volume: 1 Issue: 2, 311 - 323, 31.12.2020
Bahadır Sayıncı
,
Ruçhan Çömlek
,
Mustafa Boydaş
,
Bünyamin Demir
Abstract
The aim of this study was to examine the effect of disc position angle (0º and 30º), spray speed (0.4 and 1.2 m s-1) and distance between nozzles (0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 m) on volumetric distribution uniformity, and determine optimal operational parameters in the spinning disc nozzle used in low volume pesticide application. The spray application was performed using a linear moving - spray simulator under controlled laboratory conditions. The revolution of the spinning disc was set to 7000 rpm and the spray height was stable at 40 cm. Tartrazine at 1 g 1-1 concentration was mixed into the spray liquid. The application rate was 30 l ha-1. Petri dishes of 35 mm diameter were used for sampling. According to the results of the research, the spray pattern was formed in an asymmetrical appearance in all applications. For disc position angles of 0° and 30°, the lowest variation coefficient (CV) was obtained at 0.4 m s-1 spraying speed and 0.7-0.9 m nozzle distances. The CV means determined at 1.2 m s-1 spraying speed were higher than 0.4 m s-1. However, when the disc position angle was 30º, the CV means obtained at 1.2 m s-1 spraying speed partially improved according to the 0º disc position angle.
Project Number
Atatürk Üniversitesi Bilimsel Araştırma Fonu (Proje No: BAP 2013/128) ve Mersin Üniversitesi Bilimsel Araştırma Fonu (Proje No: 2019-2-AP4-3526)
References
- Azimi AH, Carpenter TG and Reichard DL (1985). Nozzle spray distribution for pesticide application. Transactions of the ASAE, 28 (5): 1410-1414. https://doi.org/10.13031/2013.32451
- Bayat A and Bozdogan NY (2005). An air-assisted spinning disc nozzle and its performance on spray deposition and reduction of drift potential. Crop Protection, 24: 651-960. https://doi.org/10.1016/j.cropro.2005.01.015
- Bode LE, Butler BJ, Pearson SL and Bouse LF (1983). Characteristics of the micromax rotary atomizer. Transactions of the ASAE, 24 (4): 999-1004. https://doi.org/10.13031/2013.34064
- Coates W and Palumbo J (1997). Deposition, off-target movement, and efficacy of CaptureTM and ThiodanTM applied to cantaloupes using five sprayers. Applied Engineering in Agriculture, 13 (2): 181-188. https://doi.org/10.13031/2013.21595
- Çilingir İ and Dursun E (2002). Plant Protection Machinery. Ankara University, Publication Number: 1531, Ankara, p. 263.
- Dante ET and Gupta CP (1991). Deposition studies of an electrostatic spinning disc sprayer. Transactions of the ASAE, 34 (5): 1927-1934. https://doi.org/10.13031/2013.31818
- Gianino C (2006). Measurement of surface tension by the dripping from a needle. Physics Education, 41 (5): 440-445. https://doi.org/10.1088/0031-9120/41/5/010
- Gupta CP and Duc TX (1996). Deposition studies of a hand-held air-assisted electrostatic sprayer. Transactions of the ASAE, 39 (5): 1633-1639. https://doi.org/10.13031/2013.27679
- Ishfaque M, Ashfaq M and Sayyed AH (2005). Effect of power droplet size by hand held spinning disc sprayer. Pakistan Journal of Biological Sciences, 8 (4): 567-570.
- Krishnan P, Williams TH and Kemble LJ (1988). Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. Transactions of the ASAE, 31 (2): 386-389.
- Krishnan P, Gal I, Kemble LJ and Gottfried SL (1993). Effect of sprayer bounce and wind condition on spray pattern displacement of TJ60-8004 fan nozzles. Transactions of the ASAE, 36 (4): 997-1000.
- Lello ER, Patel MN, Matthews GA and Wright DJ (1996). Application technology for entomopathogenic nematodes against foliar pests. Crop Protection, 15 (6): 567-574.
- Mason JM, Matthews GA and Wright DJ (1998). Appraisal of spinning disc technology for the application of entomopathogenic nematodes. Crop Protection, 17 (5): 453-461.
- Mason JM, Matthews GA and Wright DJ 1999. Evaluation of spinning disc technology for the application of entomopathogenic nematodes against a foliar pest. Journal of Invertebrate Pathology, 73: 282-288.
- Matthews GA (2000). Pesticide Application Methods. (3rd ed.). Oxford, England: Blackwell Science 7 Ltd. pp. 432.
- Monaco TJ, Weller SC and Ashton FM (2002). Weed Science: Principles and Practices (4th Edition). John Wiley & Sons, Inc., ISBN: 0-471-37051-7.
- Parnell MA, King WJ, Jones KA, Ketunuti U and Wetchakit D (1999). A comparison of motorised knapsack mistblower, medium volume application, and spinning disk, very low volume application, of Helicoverpa armigera nuclear polyhedrosis virus on cotton in Thailand. Crop Protection, 18: 259-265.
- Piggott SJ, Clayton R, Matthews GA and Wright DJ (2003). Development of a new application apparatus for entomopathogenic nematodes. Pest Management Science, 59: 1344-1348.
- Sayıncı B ve Çömlek R (2015). İlaç tutunma analizleri için pestisitlerin yerine kullanılan sentetik renk maddelerinin geri kazanımı. Tarım Makinaları Bilimi Dergisi, 11(3): 221-229.
- Sayıncı B, Demir B and Açık N (2020). Comparison of spray nozzles in terms of spray coverage and drop distribution uniformity at low volume. Turkish Journal of Agriculture and Forestry, 44(3): 262-270. https://doi.org/10.3906/tar-1905-112
- Sayıncı B, Demir B, Çömlek R and Boydaş MG (2019). Comparison of spray transfer and penetration of different hydraulic nozzles at low application volume. Alinteri Journal of Agriculture Sciences, 34(1): 67-75. https://doi.org/10.28955/alinterizbd.578538
- Shapiro DI, Gouge DH, Piggott SJ and Fife JP (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38: 124-133. https://doi.org/10.1016/j.biocontrol.2005.09.005
- Smith DB, Askew S D, Morris WH, Shaw DR and Boyette M (2000). Droplet size and leaf morphology effects on pesticide spray deposition. Transactions of the ASAE, 43 (2): 255-259. https://doi.org/10.13031/2013.2700
- Spillman JJ (1984). Spray impaction, retention and adhesion: An introduction to basic characteristics. Pesticide Science, 15: 97-106. https://doi.org/10.1002/ps.2780150202
- Wang G, Han Y, Li X, Andaloro J, Chen P, Hoffmann WC, Han X, Chen S and Lan Y (2020). Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of the Total Environment, 737: 1 39793. https://doi.org/10.1016/j.scitotenv.2020.139793
- Wang G, Lan Y, Qi H, Chen P, Hewitt A and Han Y (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75: 1546-1555. https://doi.org/10.1002/ps.5321
- Zhu H, Dorner JW, Rowland DL, Derksen RC and Ozkan HE (2004). Spray penetration into peanut canopies with hydraulic nozzle tips. Biosystems Engineering, 87 (3): 275-273. https://doi.org/10.1016/j.biosystemseng.2003.11.012
- Zhu H, Rowland DL, Dorner JW, Derksen RC and Sorensen RB (2002). Influence of plant structure, orifice size, and nozzle inclination on spray penetration into peanut canopy. Transactions of the ASAE, 45 (5): 1295-1301. https://doi.org/10.13031/2013.11058
- Wang L, Zhang N, Slocombe JW, Thierstein GE and Kuhlman DK (1995). Experimental analysis of spray distribution pattern uniformity for agricultural nozzles. Applied Engineering in Agriculture, 11 (1): 51-55. https://doi.org/10.13031/2013.25716
- Womac A, Etheridge R, Seibert A, Hogan D and Ray S (2001). Sprayer speed and venture-nozzle effects on broadcast application uniformity. Transactions of the ASAE, 44 (6): 1437-1444. https://doi.org/10.13031/2013.7011