Research Article
BibTex RIS Cite

İlköğretim Matematik Öğretmen Adaylarının Değişim Oranı ile İlgili Düşünme Biçimlerinin Bir Modelleme Etkinliği Bağlamında İncelenmesi

Year 2017, , 188 - 217, 05.04.2017
https://doi.org/10.16949/turkbilmat.304212

Abstract

Öğretmen adaylarının matematiksel modelleme konusunda mesleki bilgi ve
becerilerini geliştirmeyi hedefleyen geniş kapsamlı bir çalışmanın parçası
olarak, bu çalışmada nüfus artışını konu alan bir modelleme etkinliği
bağlamında ilköğretim matematik öğretmen adaylarının “değişim oranı” kavramı
üzerine düşünme biçimleri incelenmektedir. Çalışmanın katılımcılarını bir
devlet üniversitesinin ilköğretim matematik öğretmenliği bölümünde son sınıfa
devam eden 9 öğretmen adayı oluşturmaktadır. Bir matematiksel modelleme dersi
kapsamında yapılan çalışmanın veri kaynaklarını; grup çalışmalarından derlenen
yazılı raporlar ve çalışma kâğıtları, etkinlik sonrası düşünce raporları ve
araştırmacı alan notları oluşturmaktadır. Bulgulara göre, çalışmanın
katılımcıları “zamana bağlı nüfus artış oranı (hızı)” ifadesini yüzdelik ve eğim olmak üzere iki farklı şekilde yorumlamıştır. Öğretmen
adaylarının yüzdelik yorumları daha
yoğun olmakla birlikte modelleme etkinliği bağlamında nüfus verilerindeki yıl
aralıklarının eşit verilmemesi bazı katılımcıları eğim yorumuna yönlendirmiştir. Ortaya çıkan bu iki farklı düşünme
şekli, öğretmen adaylarının yüzdelik ve eğim yorumu arasındaki farkı ve bu
ikisi arasındaki matematiksel ilişkiyi yorumlamada zorlandıklarını
göstermektedir. Ayrıca “rate of change” kavramının Türkçe ifadesi ile ilgili
problemli bir durum da gözlemlenmiştir. Çalışmanın sonuçları, öğretmen
adaylarının konu ile ilgili zorluklarının muhtemel kaynağı olan birimli oran ve birimsiz oran kavramları arasındaki fark dikkate alınarak
tartışılmıştır.
  

References

  • Ärlebäck, J. B., Doerr, H. M., & O’Neil, A. M. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336.
  • Akar, K. G. (2009). Oran konusunun kavramsal öğreniminde karşılaşılan zorluklar ve çözüm önerileri. E. Bingölbali ve M. F. Özmantar (Ed.), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri içinde (s. 263–285). Ankara: Pegem Akademi Yayıncılık.
  • Bezuidenhout, J. (1998). First year university students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), 389–399.
  • Bingölbali, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler. M. F. Özmantar, E. Bingölbali ve H. Akkoç (Ed.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (s. 223–255). Ankara: Pegem Akademi Yayıncılık.
  • Carlson, M., Jacops, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.
  • Coe, E. E. (2007). Modeling teachers’ way of thinking about rate of change (Unpublished doctoral dissertation). Arizona State University, Tempe, AZ, the USA.
  • Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th edition). London: Routledge.
  • Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2/3), 134–165.
  • Cooney, T. J., Beckmann, S., Lloyd, G. M., Wilson, P. S., & Zbiek, R. M. (2010). Developing essential understanding of functions for teaching mathematics in grades 9-12. Reston, VA: National Council of Teachers of Mathematics.
  • Delice, A. ve Sevimli, E. (2016). Matematik eğitiminde çoklu temsiller. E. Bingölbali, S. Arslan ve İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (ss. 519–530). Ankara: Pegem Akademi Yayıncılık.
  • Doerr, H., & Lesh, R. (2011). Models and modelling perspectives on teaching and learning mathematics in the twenty-first century. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), International perspectives on the teaching and learning of mathematical modeling (pp. 247–268). Dordrecht, the Netherlands: Springer.
  • Doerr, H. & O’Neil, A. M. (2012). A modeling approach to developing an understanding of average rate of change. CERME 7, Working Group 6, Retrieved December 22, 2010 from http://www.cerme7.univ.rzeszow.pl/WG/6/CERME7-Doerr&ONeil.pdf
  • Doorman, L. M., & Gravemeijer, K. P. E. (2009). Emergent modeling: discrete graphs to support the understanding of change and velocity. ZDM- Mathematics Education, 41, 199–211.
  • English, L. D. (2003). Reconciling theory, research, and practice: A models and modeling perspective. Educational Studies in Mathematics, 54, 225–248.
  • Erbaş, A. K., Çetinkaya, B., Alacacı, C., Çakıroğlu, E., Aydoğan-Yenmez, A., Şen-Zeytun, A., Korkmaz, H., Kertil, M., Didiş, M. G., Baş, S. ve Şahin, Z. (2016). Lise matematik konuları için günlük hayattan modelleme soruları. Ankara: Türkiye Bilimler Akademisi.
  • Gökçek, T. ve Açıkyıldız, G. (2016). Matematik öğretmeni adaylarının türev kavramıyla ilgili yaptıkları hatalar. Turkish Journal of Computer and Mathematics Education, 7(1), 112–141.
  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39, 111–129.
  • Herbert, S., & Pierce, R. (2008). An “Emergent Model” for rate of change. International Journal of Computers for Mathematical Learning, 13, 231–249.
  • Herbert, S., & Pierce, R. (2012). Revealing educationally critical aspects of rate. Educational Studies in Mathematics, 81, 85–101.
  • Hoffkamp, A. (2011). The use of interactive visualizations to foster the understanding of concepts of calculus: design principles and empirical results. ZDM Mathematics Education, 43, 359-372.
  • Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31, 313-330.
  • Kelly, A. E. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13, 115–128.
  • Kendal, M., & Stacey, K. (2003). Tracing learning of three representations with the differentiation competency framework. Mathematics Education Research Journal, 15(1), 22–41.
  • Kertil, M. (2014). Pre-service elementary mathematics teachers’ understanding of derivative through a model development unit (Unpublished doctoral dissertation). Middle East Technical University, Ankara, Turkey.
  • Lehrer, R., & Schauble, L. (2007). A developmental approach for supporting the epistemology of modeling. In W. Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modeling and applications in mathematics education (pp. 153–160). New York, NY: Springer.
  • Lesh, R. (2010). Tools, researchable issues & conjectures for investigating: what it means to understand statistics (or other topics) meaningfully. Journal of Mathematical Modeling and Application, 1(2), 16–48.
  • Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003). Model development sequences. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. Mathematical Thinking and Learning, 5, 211–233.
  • Lesh, R., & Harel, G. (2003). Problem solving, modelling and local conceptual development. Mathematical Thinking and Learning, 5(2&3), 157–189.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In R. Lesh, & A. Kelly (Eds.), Handbook of research design in mathematics and science education (pp. 591–645). Hillsdale, NJ: Lawrence Erlbaum.
  • Lesh, R. A., Kelly, A. E., & Yoon, C. (2008). Multitiered design experiments in mathematics, science, and technology education. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education (pp. 131–148). New York, NY: Routledge.
  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14, 235–250.
  • Rowland, D. R., & Jovanoski, Z. (2004). Student interpretation of the terms in first-order ordinary differential equations in modeling contexts. International Journal of Mathematical Education in Science and Technology, 35(4), 505–516.
  • Schorr, R. Y., & Lesh, R. (2003). A modeling approach for providing teacher development. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 159–174). Mahwah, NJ: Lawrence Erlbaum.
  • Sriraman, B. (2006). Conceptualizing the model-eliciting perspective of mathematical problem solving. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME 4) (Vol. 1, pp. 1686-1695). Sant Feliu de Guíxols, Spain: FUNDEMI IQS, Universitat Ramon Llull.
  • Stroup, W. (2002). Understanding qualitative calculus: A structural synthesis of learning research. International Journal of Computers for Mathematical Learning, 7, 167–215.
  • Stump, S. (1999). Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, 11(2), 124–144.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2009). İlköğretim matematik dersi 6-8. sınıflar öğretim program ve kılavuzu. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2011). Ortaöğretim matematik (9, 10, 11 ve 12. sınıflar) dersi öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2013a). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2013b). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Taşar, M. F. (2010). What part of the concept of acceleration is difficult to understand: The mathematics, the physics, or both? ZDM- Mathematics Education, 42, 469–482.
  • Teuscher, D., & Reys, R. E. (2012). Rate of change: AP calculus students’ understandings and misconceptions after completing different curricular paths. School Science and Mathematics, 112, 359–376.
  • Thompson, P. W. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.
  • Thompson, P.W. (1994b). The development of the concept of speed and its relationship to concepts of rate. In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181–236). New York, NY: State University of New York Press.
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609–637.
  • White, P., & Mitchelmore, M. (1996). Conceptual knowledge in introductory calculus. Journal for Research in Mathematics Education, 27(1), 79–95.
  • Wilhelm, J. A., & Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887–904.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (5. Baskı). Ankara: Seçkin Yayıncılık.
  • Yoon, C., Dreyfus, T., & Thomas, M. O. J. (2010). How high is the tramping track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 22(1), 141–157.
  • Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. Schoenfeld, J. J. Kaput, & C. Kesel (Eds.), Research in collegiate mathematics education (pp. 103–127). Providence, RI: American Mathematical Society.
  • Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: the concept of derivative as an example. Journal of Mathematical Behavior, 25, 1–17.

Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity

Year 2017, , 188 - 217, 05.04.2017
https://doi.org/10.16949/turkbilmat.304212

Abstract

As a part of a larger study
aiming at developing pre-service teachers’ pedagogical knowledge about
mathematical modeling, this study investigates pre-service elementary
mathematics teachers’ ways of thinking regarding rate of change in the context
of a modeling task on population growth. The participants of the study were 9
prospective middle school mathematics teachers in their senior year attending a
public university. The study was conducted as a part of an undergraduate course
on mathematical modeling for prospective teachers. Data were collected through
the prospective teachers’ written group work and reports regarding their
solution to the modeling activity, individual reflection papers, and
researchers’ field-notes. The results showed that participants demonstrated two
different ways of thinking about the expression “rate of change in population
with respect to time”: (i) percentage of change in population, and (ii) per
year change in population (slope). Even though “percentage” interpretation was
dominant, some of the participants were directed to “per year change in
population” interpretation as the year intervals in the problem context were
not given with equal intervals. The results revealed about prospective
teachers’ difficulties in conceiving the difference and the mathematical
relationship between “percentage” and “slope” interpretations. The results also
revealed about the problematic aspect of expressing the term/concept “rate of
change” in Turkish. As possible sources of these difficulties, the results are
discussed in light of the distinction between rate and ratio.

References

  • Ärlebäck, J. B., Doerr, H. M., & O’Neil, A. M. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336.
  • Akar, K. G. (2009). Oran konusunun kavramsal öğreniminde karşılaşılan zorluklar ve çözüm önerileri. E. Bingölbali ve M. F. Özmantar (Ed.), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri içinde (s. 263–285). Ankara: Pegem Akademi Yayıncılık.
  • Bezuidenhout, J. (1998). First year university students’ understanding of rate of change. International Journal of Mathematical Education in Science and Technology, 29(3), 389–399.
  • Bingölbali, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler. M. F. Özmantar, E. Bingölbali ve H. Akkoç (Ed.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (s. 223–255). Ankara: Pegem Akademi Yayıncılık.
  • Carlson, M., Jacops, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378.
  • Coe, E. E. (2007). Modeling teachers’ way of thinking about rate of change (Unpublished doctoral dissertation). Arizona State University, Tempe, AZ, the USA.
  • Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th edition). London: Routledge.
  • Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2/3), 134–165.
  • Cooney, T. J., Beckmann, S., Lloyd, G. M., Wilson, P. S., & Zbiek, R. M. (2010). Developing essential understanding of functions for teaching mathematics in grades 9-12. Reston, VA: National Council of Teachers of Mathematics.
  • Delice, A. ve Sevimli, E. (2016). Matematik eğitiminde çoklu temsiller. E. Bingölbali, S. Arslan ve İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (ss. 519–530). Ankara: Pegem Akademi Yayıncılık.
  • Doerr, H., & Lesh, R. (2011). Models and modelling perspectives on teaching and learning mathematics in the twenty-first century. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), International perspectives on the teaching and learning of mathematical modeling (pp. 247–268). Dordrecht, the Netherlands: Springer.
  • Doerr, H. & O’Neil, A. M. (2012). A modeling approach to developing an understanding of average rate of change. CERME 7, Working Group 6, Retrieved December 22, 2010 from http://www.cerme7.univ.rzeszow.pl/WG/6/CERME7-Doerr&ONeil.pdf
  • Doorman, L. M., & Gravemeijer, K. P. E. (2009). Emergent modeling: discrete graphs to support the understanding of change and velocity. ZDM- Mathematics Education, 41, 199–211.
  • English, L. D. (2003). Reconciling theory, research, and practice: A models and modeling perspective. Educational Studies in Mathematics, 54, 225–248.
  • Erbaş, A. K., Çetinkaya, B., Alacacı, C., Çakıroğlu, E., Aydoğan-Yenmez, A., Şen-Zeytun, A., Korkmaz, H., Kertil, M., Didiş, M. G., Baş, S. ve Şahin, Z. (2016). Lise matematik konuları için günlük hayattan modelleme soruları. Ankara: Türkiye Bilimler Akademisi.
  • Gökçek, T. ve Açıkyıldız, G. (2016). Matematik öğretmeni adaylarının türev kavramıyla ilgili yaptıkları hatalar. Turkish Journal of Computer and Mathematics Education, 7(1), 112–141.
  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39, 111–129.
  • Herbert, S., & Pierce, R. (2008). An “Emergent Model” for rate of change. International Journal of Computers for Mathematical Learning, 13, 231–249.
  • Herbert, S., & Pierce, R. (2012). Revealing educationally critical aspects of rate. Educational Studies in Mathematics, 81, 85–101.
  • Hoffkamp, A. (2011). The use of interactive visualizations to foster the understanding of concepts of calculus: design principles and empirical results. ZDM Mathematics Education, 43, 359-372.
  • Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31, 313-330.
  • Kelly, A. E. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13, 115–128.
  • Kendal, M., & Stacey, K. (2003). Tracing learning of three representations with the differentiation competency framework. Mathematics Education Research Journal, 15(1), 22–41.
  • Kertil, M. (2014). Pre-service elementary mathematics teachers’ understanding of derivative through a model development unit (Unpublished doctoral dissertation). Middle East Technical University, Ankara, Turkey.
  • Lehrer, R., & Schauble, L. (2007). A developmental approach for supporting the epistemology of modeling. In W. Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modeling and applications in mathematics education (pp. 153–160). New York, NY: Springer.
  • Lesh, R. (2010). Tools, researchable issues & conjectures for investigating: what it means to understand statistics (or other topics) meaningfully. Journal of Mathematical Modeling and Application, 1(2), 16–48.
  • Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003). Model development sequences. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Lesh, R., Doerr, H. M., Carmona, G., & Hjalmarson, M. (2003). Beyond constructivism. Mathematical Thinking and Learning, 5, 211–233.
  • Lesh, R., & Harel, G. (2003). Problem solving, modelling and local conceptual development. Mathematical Thinking and Learning, 5(2&3), 157–189.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In R. Lesh, & A. Kelly (Eds.), Handbook of research design in mathematics and science education (pp. 591–645). Hillsdale, NJ: Lawrence Erlbaum.
  • Lesh, R. A., Kelly, A. E., & Yoon, C. (2008). Multitiered design experiments in mathematics, science, and technology education. In A. E. Kelly, R. A. Lesh, & J. Y. Baek (Eds.), Handbook of design research methods in education (pp. 131–148). New York, NY: Routledge.
  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14, 235–250.
  • Rowland, D. R., & Jovanoski, Z. (2004). Student interpretation of the terms in first-order ordinary differential equations in modeling contexts. International Journal of Mathematical Education in Science and Technology, 35(4), 505–516.
  • Schorr, R. Y., & Lesh, R. (2003). A modeling approach for providing teacher development. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 159–174). Mahwah, NJ: Lawrence Erlbaum.
  • Sriraman, B. (2006). Conceptualizing the model-eliciting perspective of mathematical problem solving. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME 4) (Vol. 1, pp. 1686-1695). Sant Feliu de Guíxols, Spain: FUNDEMI IQS, Universitat Ramon Llull.
  • Stroup, W. (2002). Understanding qualitative calculus: A structural synthesis of learning research. International Journal of Computers for Mathematical Learning, 7, 167–215.
  • Stump, S. (1999). Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, 11(2), 124–144.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2009). İlköğretim matematik dersi 6-8. sınıflar öğretim program ve kılavuzu. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2011). Ortaöğretim matematik (9, 10, 11 ve 12. sınıflar) dersi öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2013a). Ortaokul matematik dersi (5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Talim ve Terbiye Kurulu Başkanlığı [TTKB]. (2013b). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: Devlet Kitapları Müdürlüğü.
  • Taşar, M. F. (2010). What part of the concept of acceleration is difficult to understand: The mathematics, the physics, or both? ZDM- Mathematics Education, 42, 469–482.
  • Teuscher, D., & Reys, R. E. (2012). Rate of change: AP calculus students’ understandings and misconceptions after completing different curricular paths. School Science and Mathematics, 112, 359–376.
  • Thompson, P. W. (1994a). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.
  • Thompson, P.W. (1994b). The development of the concept of speed and its relationship to concepts of rate. In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181–236). New York, NY: State University of New York Press.
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609–637.
  • White, P., & Mitchelmore, M. (1996). Conceptual knowledge in introductory calculus. Journal for Research in Mathematics Education, 27(1), 79–95.
  • Wilhelm, J. A., & Confrey, J. (2003). Projecting rate of change in the context of motion onto the context of money. International Journal of Mathematical Education in Science and Technology, 34(6), 887–904.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (5. Baskı). Ankara: Seçkin Yayıncılık.
  • Yoon, C., Dreyfus, T., & Thomas, M. O. J. (2010). How high is the tramping track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 22(1), 141–157.
  • Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. Schoenfeld, J. J. Kaput, & C. Kesel (Eds.), Research in collegiate mathematics education (pp. 103–127). Providence, RI: American Mathematical Society.
  • Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: the concept of derivative as an example. Journal of Mathematical Behavior, 25, 1–17.
There are 53 citations in total.

Details

Journal Section Research Articles
Authors

Mahmut Kertil

Ayhan Kürşat Erbaş

Bülent Çetinkaya This is me

Publication Date April 5, 2017
Published in Issue Year 2017

Cite

APA Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2017). Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 8(1), 188-217. https://doi.org/10.16949/turkbilmat.304212
AMA Kertil M, Erbaş AK, Çetinkaya B. Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity. Turkish Journal of Computer and Mathematics Education (TURCOMAT). April 2017;8(1):188-217. doi:10.16949/turkbilmat.304212
Chicago Kertil, Mahmut, Ayhan Kürşat Erbaş, and Bülent Çetinkaya. “Pre-Service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8, no. 1 (April 2017): 188-217. https://doi.org/10.16949/turkbilmat.304212.
EndNote Kertil M, Erbaş AK, Çetinkaya B (April 1, 2017) Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8 1 188–217.
IEEE M. Kertil, A. K. Erbaş, and B. Çetinkaya, “Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 8, no. 1, pp. 188–217, 2017, doi: 10.16949/turkbilmat.304212.
ISNAD Kertil, Mahmut et al. “Pre-Service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8/1 (April 2017), 188-217. https://doi.org/10.16949/turkbilmat.304212.
JAMA Kertil M, Erbaş AK, Çetinkaya B. Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2017;8:188–217.
MLA Kertil, Mahmut et al. “Pre-Service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 8, no. 1, 2017, pp. 188-17, doi:10.16949/turkbilmat.304212.
Vancouver Kertil M, Erbaş AK, Çetinkaya B. Pre-service Elementary Mathematics Teachers’ Ways of Thinking about Rate of Change in the Context of a Modeling Activity. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2017;8(1):188-217.