Research Article
BibTex RIS Cite

The Investigation of Preservice Mathematics Teachers’ Knowledge about Quadrilaterals through Concept Maps

Year 2018, , 1 - 30, 08.04.2018
https://doi.org/10.16949/turkbilmat.333678

Abstract

The aim of this study is to determine conceptions of preservice
mathematics teachers’ (PMTs’) on quadrilaterals through concept map method.
This qualitative study is conducted with 26 PMTs. As a data collection tool,
documents are obtained through concept map technique which has low guidance, such
as “design a map”. With this technique PMTs were asked to draw a concept map on
quadrilaterals and each student made his/her own map. The PMTs’ drawings and
highlighted concept definitions related to quadrilaterals in concept maps were
analyzed descriptively whether they are correct or not. The findings showed
that most of the PMTs used geometric figures in forming their own maps and they
made generally partition classifications. Also the participants drew squares,
parallelograms and rectangles most, and rhombuses and trapezoids least.
Besides, the explanations of the wrong drawings showed that PMTs had the
necessary knowledge of quadrilaterals, but they ignored this knowledge in their
drawings. Finally, it was determined that the participants defined trapezoid as a ‘quadrilateral with only two parallel sides’.

References

  • Afamasaga-Fuata’i, K. (2009). Analysing the “Measurement” strand using concept maps and vee diagrams. Ed. Afamasaga-Fuata‟i, K. (2009). Concept mapping in mathematics. Springer, New York.
  • Akkaş, E. N., & Türnüklü, E. (2015). Middle school mathematics teachers’ pedagogical content knowledge regarding student knowledge about quadrilaterals. Elementary Education Online, 14(2), 744-756.
  • Akuysal, N. (2007). İlköğretim 7. sınıf öğrencilerinin 7. sınıf ünitelerindeki geometrik kavramlardaki yanılgıları. Yayınlanmamış yüksek lisans tezi. Konya: Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Aktaş, D. T., & Aktaş, M. C. (2012a). 8. sınıf öğrencilerinin özel dörtgenleri tanıma ve aralarındaki hiyerarşik sınıflamayı anlama durumları. İlköğretim Online, 11(3), 714-728.
  • Aktaş, M. C., & Aktaş, D. Y. (2012b). Öğrencilerin dörtgenleri anlamaları: Paralelkenar örneği. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 319-329.
  • Ay, Y., & Başbay, A. (2017). Çokgenlerle ilgili kavram yanılgıları ve olası nedenler. Ege Eğitim Dergisi, 18(1), 83-104.
  • Baki, A., & Şahin, S. M. (2004). Bilgisayar destekli kavram haritası yöntemiyle öğretmen adaylarının matematiksel öğrenmelerinin değerlendirilmesi. The Turkish Online Journal of Educational Technology-TOJET, 3(2), 91-104.
  • Ball, D. L. (1988). The subject matter preparation of prospective mathematics teachers: Challenging the myths (Research Report 88-3). East Lansing: Michigan State University, National Center for Research on Teacher Education.
  • Baykul, Y. (2005). İlköğretimde matematik öğretimi (1-5.Sınıflar). (8. Baskı). Ankara: Pegem Yayınları.
  • Bütüner, S. Ö., & Filiz, M. (2016). Matematik öğretmeni adaylarının dörtgenleri sınıflandırma becerilerinin incelenmesi. Alan Eğitimi Araştırmaları Dergisi, 2(2), 43-56.
  • Cameron, L. (2006). Picture this: My Lesson. How LAMS is being used with pre-service teachers to develop effective classroom activities. In First International LAMS Conference 2006: Designing the Future of Learning, Sydney, (pp. 25-34): LAMS Foundation.
  • Chinnappan, M., Lawson, M., & Nason, R. (1999). The use of concept mapping procedure to characterise teachers' mathematical content knowledge. In J. M. Truran and K. M. Truran (Eds.), Making the Difference: Proceedings of the 22nd Annual Conference of The Mathematics Education Research Group of Australasia (pp. 167-176), Adelaide, South Australia: MERGA.
  • Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. In: D. A. Grouws (Ed.), Handbook on mathematics teaching and learning (pp. 420–464). New York: Macmillan.
  • De Villiers, M. (1994). The role and function of a hierarchical classisication of quadrilaterals. Learning of Mathematics, 14(1), 11-18.
  • Doğan, A., Özkan, K., Çakır, N. K., Baysal, D., & Gün, P. (2012). İlköğretim ikinci kademe öğrencilerinin yamuk kavramına ait yanılgıları ve bu yanılgıların sınıf seviyelerine göre değişimi. Uşak Üniversitesi Sosyal Bilimler Dergisi, 5(1), 104-116.
  • Duatepe-Paksu, A., İymen, E., & Pakmak, G. S. (2012). How well elementary teachers identify parallelogram? Educational Studies, 38(4), 415-418.
  • Edmondson, K. M. (1995). Concept mapping for the development of medical curricula. Journal of Research in Science Teaching, 32(7), 777-793.
  • Erez, M., & Yerushalmy, M. (2006). If you can turn a rectangle into a square, you can turn a square into a rectangle: Young students’ experience the dragging tool. International Journal of Computers for Mathematical Learning, 11(3), 271-299.
  • Erşen, Z. B., & Karakuş, F. (2013). Sınıf öğretmeni adaylarının dörtgenlere yönelik kavram imajlarının değerlendirilmesi. Turkish Journal of Computer and Mathematics Education, 4(2), 124-146.
  • Fischbein, E., & Nachlieli, T. (1998). Concepts and figures in geometrical reasoning. International Journal of Science Education, 20(10), 1193-1211.
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
  • Fujita, T., & Jones, K. (2006a). Primary trainee teachers’ understanding of basic geometrical figures in Scotland. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.). Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 129-136. Prague: PME.
  • Fujita, T., & Jones, K. (2006b). Primary trainee teachers´ knowledge of parallelograms. In D. Hewitt (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 26(2), 25-30.
  • Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: Towards a theoretical framing. Research in Mathematics Education, 9(1-2), 3-20.
  • Fujita, T. (2008). Learners’ understanding of the hierarchical classification of quadrilaterals. In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 28(2), 31-36.
  • Fujita, T. (2012). Learners’ level of understanding of the ınclusion relations of quadrilaterals and prototype phenomena. The Journal of Mathematical Behavior, 31, 60-72.
  • Grossman, P. L. (1990). The making of a teacher: Teacher Knowledge and Teacher Education. London: Teachers College Press.
  • Hasegawa, J. (1997). Concept formation of triangles and quadrilaterals in the second grade. Educational Studies in Mathematics, 32(2), 157-179.
  • Horzum, T. (2016). Total görme engelli öğrencilerin perspektifinden üçgen kavramı. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(2), 275-296.
  • Kaptan, F. (1998). Fen öğretiminde kavram haritası yönteminin kullanılması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 14, 95-99.
  • Kondratieva, M. F., & Radu, O. G. (2009). Fostering connections between the verbal, algebraic, and geometric representations of basic planar curves for student’s success in the study of mathematics. The Mathematics Enthusiast, 6(1&2), 213-238.
  • McCagg, E. C., & Dansereau, D. F. (1991). A convergent paradigm for examining knowledge mapping as a learning strategy. Journal of Educational Research, 84, 317–324.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage.
  • Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some quadrilaterals. Educational Studies in Mathematics, 42(2), 179-196.
  • Nakahara, T. (1995). Children’s construction process of the concepts of basic quadrilaterals in Japan. In A.Oliver & K. Newstead (Eds.), Proceedings of the 19th Conference of the International Group for the Psychology of Mathematics Education, 3, 27-34.
  • Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. In: D. F. Treagust, R. Duit, and B. J. Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 32-43). New York and London: Teachers College Columbia University.
  • Okazaki, M., & Fujita, T. (2007). Prototype phenomena and common cognitive paths in the understanding of the inclusion relations between quadrilaterals in Japan and Scotland. In J. H. Woo, J. H. Lew, K. S. Park and D. Y. Seo (Eds.). Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, 4, pp. 41-48. Seoul: PME.
  • Öztoprakçı, S., & Çakıroğlu, E. (2013). Dörtgenler. İsmail Özgür Zembat, Mehmet Fatih Özmantar, Erhan Bingölbali, Hakan Şandır ve Ali Delice (Ed.), Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar içinde (s. 249-272). Ankara: Pegem Akademi.
  • Pickreign, J. (2007). Rectangle and rhombi: How well do pre-service teachers know them? Issues in the Undergraduate Mathematics Preparation of School Teachers, 1, 1-7.
  • Popovic, G. (2012). Who is this trapezoid, anyway? Mathematics Teaching in the Middle School, 18(4), 196-199.
  • Post, T. R., Harel, G., Behr, M. J. & Lesh, R. (1991). Intermediate teachers’ knowledge of rational number concepts. In E. Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), Integrating research on teaching and learning mathematics (pp. 194–217). Albany: State University of New York Press.
  • Rösken, B., & Rolka, K. ( 2007). Integrating intuition: The role of concept image and concept definition for students’ learning of integral calculus. The Montana Mathematics Enthusiast, 3, 181-204.
  • Ruiz-Primo, M. A. (2004). Examining concept maps as an assessment tool. In A. J. Canas, J. D. Novak, and F. M. Gonzalez (Eds.), Concept maps: Theory, methodology, technology: Proceedings of the first international conference on concept mapping (pp. 555–562). Pamplona, Spain: Universidad Pública de Navarra.
  • Ruiz-Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Education, 38(2), 260-278.
  • Schwarz, B. B., & Hershkowitz, R. (1999). Prototypes: Brakes or levers in learning the function concept? The role of computer tools. Journal for Research in Mathematics Education, 30(4), 362-389.
  • Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics with special reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
  • Toumasis, C. (1995). Concept worksheet: An important tool for learning. The Mathematics Teacher, 88(2), 98-100. Retrieved from http://www.jstor.org/stable/27969225.
  • Toptaş, V. (2010). An Analysis of the elementary school mathematics curriculum and presentation of geometry concepts in textbooks. Elementary Education Online, 9(1), 136-149.
  • Türnüklü, E. (2014). Construction of inclusion relations of quadrilaterals: Analysis of preservice elementary mathematics teachers’ lesson plans. Education and Science, 39(173), 198-208.
  • Türnüklü, E., Alaylı, F. G., & Akkaş, E. N. (2013). Investigation of prospective primary mathematics teachers’ perceptions and images for quadrilaterals. Educational Sciences: Theory & Practice, 13(2), 1225-1232.
  • Ulusoy, F., & Çakıroğlu, E. (2017). Ortaokul öğrencilerinin paralelkenarı ayırt etme biçimleri: Aşırı özelleme ve aşırı genelleme. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 457- 475.
  • Usiskin, Z., Griffin, J., Witonsky, D., & Willmore, E. (2008). The classification of quadrilaterals: A study in definition. Charlotte, NC: Information Age Publishing.
  • Willams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for Research in Mathematics Education, 29(4), 414–421.
  • Vanides, J., Yin, Y., Tomita, M., & Ruiz-Primo M. A. (2005). Using concept maps in the science classroom. Science Scope, 28(8), 27–31.
  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concepts of functions. Journal for Research in Mathematics Education, 20(4), 356-366.
  • Vinner, S. & Hershkowitz, R. (1980). Concept images and some common cognitive paths in the development of some simple geometric concepts, Proceedings of the 4th Conference of the International Group for the Psychology of Mathematics Education, 177-184.
  • Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 65-81). Kluwer, The Netherlands: Dordrecht.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri (6. Baskı) Ankara: Seçkin Yayıncılık.
  • Zaskis, R., & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies in Mathematics, 69, 131–148.

Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi

Year 2018, , 1 - 30, 08.04.2018
https://doi.org/10.16949/turkbilmat.333678

Abstract

Bu çalışmanın amacı ortaokul matematik öğretmeni adaylarının dörtgenler ile ilgili anlamalarını kavram haritası aracılığıyla belirlemektir. Nitel bir
doğaya sahip olan bu çalışma 26 ortaokul matematik öğretmeni adayı ile
gerçekleştirilmiştir. Veri toplama aracı olarak yönlendirmesi düşük olan
“sıfırdan harita yap” türü kavram haritası tekniği ile elde edilen belgeler
kullanılmıştır. Bu teknik ile her bir öğretmen adayından dörtgenler ile ilgili
kendi kavram haritalarını oluşturmaları istenmiştir. Kavram haritalarında
öğretmen adaylarının dörtgenlere ilişkin çizimleri ve işaret ettikleri tanımları doğru ve hatalı olmaları bazında betimsel olarak analiz edilmiştir. Bulgular
katılımcıların çoğunluğunun kavram haritalarını oluşturmak için geometrik
çizimleri kullandıklarını ve genellikle parçalı sınıflama yaptıklarını
göstermiştir. Katılımcılar en çok kare, paralelkenar ve dikdörtgen, en az da
eşkenar dörtgen ve yamuk çizimlerini ele almışlardır. Hatalı çizim yapan
katılımcıların yazılı açıklamalarına bakıldığında ise, dörtgenlere ilişkin
gerekli özellikleri bildikleri ancak çizimlerde bu özellikleri göz ardı
ettikleri görülmüştür. Son olarak, katılımcıların yamuğu çoğunlukla “yalnız bir
çift kenarı paralel olan dörtgen” olarak tanımladıkları belirlenmiştir.

References

  • Afamasaga-Fuata’i, K. (2009). Analysing the “Measurement” strand using concept maps and vee diagrams. Ed. Afamasaga-Fuata‟i, K. (2009). Concept mapping in mathematics. Springer, New York.
  • Akkaş, E. N., & Türnüklü, E. (2015). Middle school mathematics teachers’ pedagogical content knowledge regarding student knowledge about quadrilaterals. Elementary Education Online, 14(2), 744-756.
  • Akuysal, N. (2007). İlköğretim 7. sınıf öğrencilerinin 7. sınıf ünitelerindeki geometrik kavramlardaki yanılgıları. Yayınlanmamış yüksek lisans tezi. Konya: Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Aktaş, D. T., & Aktaş, M. C. (2012a). 8. sınıf öğrencilerinin özel dörtgenleri tanıma ve aralarındaki hiyerarşik sınıflamayı anlama durumları. İlköğretim Online, 11(3), 714-728.
  • Aktaş, M. C., & Aktaş, D. Y. (2012b). Öğrencilerin dörtgenleri anlamaları: Paralelkenar örneği. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 319-329.
  • Ay, Y., & Başbay, A. (2017). Çokgenlerle ilgili kavram yanılgıları ve olası nedenler. Ege Eğitim Dergisi, 18(1), 83-104.
  • Baki, A., & Şahin, S. M. (2004). Bilgisayar destekli kavram haritası yöntemiyle öğretmen adaylarının matematiksel öğrenmelerinin değerlendirilmesi. The Turkish Online Journal of Educational Technology-TOJET, 3(2), 91-104.
  • Ball, D. L. (1988). The subject matter preparation of prospective mathematics teachers: Challenging the myths (Research Report 88-3). East Lansing: Michigan State University, National Center for Research on Teacher Education.
  • Baykul, Y. (2005). İlköğretimde matematik öğretimi (1-5.Sınıflar). (8. Baskı). Ankara: Pegem Yayınları.
  • Bütüner, S. Ö., & Filiz, M. (2016). Matematik öğretmeni adaylarının dörtgenleri sınıflandırma becerilerinin incelenmesi. Alan Eğitimi Araştırmaları Dergisi, 2(2), 43-56.
  • Cameron, L. (2006). Picture this: My Lesson. How LAMS is being used with pre-service teachers to develop effective classroom activities. In First International LAMS Conference 2006: Designing the Future of Learning, Sydney, (pp. 25-34): LAMS Foundation.
  • Chinnappan, M., Lawson, M., & Nason, R. (1999). The use of concept mapping procedure to characterise teachers' mathematical content knowledge. In J. M. Truran and K. M. Truran (Eds.), Making the Difference: Proceedings of the 22nd Annual Conference of The Mathematics Education Research Group of Australasia (pp. 167-176), Adelaide, South Australia: MERGA.
  • Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. In: D. A. Grouws (Ed.), Handbook on mathematics teaching and learning (pp. 420–464). New York: Macmillan.
  • De Villiers, M. (1994). The role and function of a hierarchical classisication of quadrilaterals. Learning of Mathematics, 14(1), 11-18.
  • Doğan, A., Özkan, K., Çakır, N. K., Baysal, D., & Gün, P. (2012). İlköğretim ikinci kademe öğrencilerinin yamuk kavramına ait yanılgıları ve bu yanılgıların sınıf seviyelerine göre değişimi. Uşak Üniversitesi Sosyal Bilimler Dergisi, 5(1), 104-116.
  • Duatepe-Paksu, A., İymen, E., & Pakmak, G. S. (2012). How well elementary teachers identify parallelogram? Educational Studies, 38(4), 415-418.
  • Edmondson, K. M. (1995). Concept mapping for the development of medical curricula. Journal of Research in Science Teaching, 32(7), 777-793.
  • Erez, M., & Yerushalmy, M. (2006). If you can turn a rectangle into a square, you can turn a square into a rectangle: Young students’ experience the dragging tool. International Journal of Computers for Mathematical Learning, 11(3), 271-299.
  • Erşen, Z. B., & Karakuş, F. (2013). Sınıf öğretmeni adaylarının dörtgenlere yönelik kavram imajlarının değerlendirilmesi. Turkish Journal of Computer and Mathematics Education, 4(2), 124-146.
  • Fischbein, E., & Nachlieli, T. (1998). Concepts and figures in geometrical reasoning. International Journal of Science Education, 20(10), 1193-1211.
  • Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
  • Fujita, T., & Jones, K. (2006a). Primary trainee teachers’ understanding of basic geometrical figures in Scotland. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.). Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 129-136. Prague: PME.
  • Fujita, T., & Jones, K. (2006b). Primary trainee teachers´ knowledge of parallelograms. In D. Hewitt (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 26(2), 25-30.
  • Fujita, T., & Jones, K. (2007). Learners’ understanding of the definitions and hierarchical classification of quadrilaterals: Towards a theoretical framing. Research in Mathematics Education, 9(1-2), 3-20.
  • Fujita, T. (2008). Learners’ understanding of the hierarchical classification of quadrilaterals. In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 28(2), 31-36.
  • Fujita, T. (2012). Learners’ level of understanding of the ınclusion relations of quadrilaterals and prototype phenomena. The Journal of Mathematical Behavior, 31, 60-72.
  • Grossman, P. L. (1990). The making of a teacher: Teacher Knowledge and Teacher Education. London: Teachers College Press.
  • Hasegawa, J. (1997). Concept formation of triangles and quadrilaterals in the second grade. Educational Studies in Mathematics, 32(2), 157-179.
  • Horzum, T. (2016). Total görme engelli öğrencilerin perspektifinden üçgen kavramı. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 17(2), 275-296.
  • Kaptan, F. (1998). Fen öğretiminde kavram haritası yönteminin kullanılması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 14, 95-99.
  • Kondratieva, M. F., & Radu, O. G. (2009). Fostering connections between the verbal, algebraic, and geometric representations of basic planar curves for student’s success in the study of mathematics. The Mathematics Enthusiast, 6(1&2), 213-238.
  • McCagg, E. C., & Dansereau, D. F. (1991). A convergent paradigm for examining knowledge mapping as a learning strategy. Journal of Educational Research, 84, 317–324.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage.
  • Monaghan, F. (2000). What difference does it make? Children’s views of the differences between some quadrilaterals. Educational Studies in Mathematics, 42(2), 179-196.
  • Nakahara, T. (1995). Children’s construction process of the concepts of basic quadrilaterals in Japan. In A.Oliver & K. Newstead (Eds.), Proceedings of the 19th Conference of the International Group for the Psychology of Mathematics Education, 3, 27-34.
  • Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. In: D. F. Treagust, R. Duit, and B. J. Fraser (Eds.), Improving Teaching and Learning in Science and Mathematics (pp. 32-43). New York and London: Teachers College Columbia University.
  • Okazaki, M., & Fujita, T. (2007). Prototype phenomena and common cognitive paths in the understanding of the inclusion relations between quadrilaterals in Japan and Scotland. In J. H. Woo, J. H. Lew, K. S. Park and D. Y. Seo (Eds.). Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, 4, pp. 41-48. Seoul: PME.
  • Öztoprakçı, S., & Çakıroğlu, E. (2013). Dörtgenler. İsmail Özgür Zembat, Mehmet Fatih Özmantar, Erhan Bingölbali, Hakan Şandır ve Ali Delice (Ed.), Tanımları ve Tarihsel Gelişimleriyle Matematiksel Kavramlar içinde (s. 249-272). Ankara: Pegem Akademi.
  • Pickreign, J. (2007). Rectangle and rhombi: How well do pre-service teachers know them? Issues in the Undergraduate Mathematics Preparation of School Teachers, 1, 1-7.
  • Popovic, G. (2012). Who is this trapezoid, anyway? Mathematics Teaching in the Middle School, 18(4), 196-199.
  • Post, T. R., Harel, G., Behr, M. J. & Lesh, R. (1991). Intermediate teachers’ knowledge of rational number concepts. In E. Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), Integrating research on teaching and learning mathematics (pp. 194–217). Albany: State University of New York Press.
  • Rösken, B., & Rolka, K. ( 2007). Integrating intuition: The role of concept image and concept definition for students’ learning of integral calculus. The Montana Mathematics Enthusiast, 3, 181-204.
  • Ruiz-Primo, M. A. (2004). Examining concept maps as an assessment tool. In A. J. Canas, J. D. Novak, and F. M. Gonzalez (Eds.), Concept maps: Theory, methodology, technology: Proceedings of the first international conference on concept mapping (pp. 555–562). Pamplona, Spain: Universidad Pública de Navarra.
  • Ruiz-Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Education, 38(2), 260-278.
  • Schwarz, B. B., & Hershkowitz, R. (1999). Prototypes: Brakes or levers in learning the function concept? The role of computer tools. Journal for Research in Mathematics Education, 30(4), 362-389.
  • Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. Tall, D. O., & Vinner, S. (1981). Concept image and concept definition in mathematics with special reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
  • Toumasis, C. (1995). Concept worksheet: An important tool for learning. The Mathematics Teacher, 88(2), 98-100. Retrieved from http://www.jstor.org/stable/27969225.
  • Toptaş, V. (2010). An Analysis of the elementary school mathematics curriculum and presentation of geometry concepts in textbooks. Elementary Education Online, 9(1), 136-149.
  • Türnüklü, E. (2014). Construction of inclusion relations of quadrilaterals: Analysis of preservice elementary mathematics teachers’ lesson plans. Education and Science, 39(173), 198-208.
  • Türnüklü, E., Alaylı, F. G., & Akkaş, E. N. (2013). Investigation of prospective primary mathematics teachers’ perceptions and images for quadrilaterals. Educational Sciences: Theory & Practice, 13(2), 1225-1232.
  • Ulusoy, F., & Çakıroğlu, E. (2017). Ortaokul öğrencilerinin paralelkenarı ayırt etme biçimleri: Aşırı özelleme ve aşırı genelleme. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(1), 457- 475.
  • Usiskin, Z., Griffin, J., Witonsky, D., & Willmore, E. (2008). The classification of quadrilaterals: A study in definition. Charlotte, NC: Information Age Publishing.
  • Willams, C. G. (1998). Using concept maps to assess conceptual knowledge of function. Journal for Research in Mathematics Education, 29(4), 414–421.
  • Vanides, J., Yin, Y., Tomita, M., & Ruiz-Primo M. A. (2005). Using concept maps in the science classroom. Science Scope, 28(8), 27–31.
  • Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concepts of functions. Journal for Research in Mathematics Education, 20(4), 356-366.
  • Vinner, S. & Hershkowitz, R. (1980). Concept images and some common cognitive paths in the development of some simple geometric concepts, Proceedings of the 4th Conference of the International Group for the Psychology of Mathematics Education, 177-184.
  • Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 65-81). Kluwer, The Netherlands: Dordrecht.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri (6. Baskı) Ankara: Seçkin Yayıncılık.
  • Zaskis, R., & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies in Mathematics, 69, 131–148.
There are 59 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Tuğba Horzum

Publication Date April 8, 2018
Published in Issue Year 2018

Cite

APA Horzum, T. (2018). Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(1), 1-30. https://doi.org/10.16949/turkbilmat.333678
AMA Horzum T. Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). April 2018;9(1):1-30. doi:10.16949/turkbilmat.333678
Chicago Horzum, Tuğba. “Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9, no. 1 (April 2018): 1-30. https://doi.org/10.16949/turkbilmat.333678.
EndNote Horzum T (April 1, 2018) Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9 1 1–30.
IEEE T. Horzum, “Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 9, no. 1, pp. 1–30, 2018, doi: 10.16949/turkbilmat.333678.
ISNAD Horzum, Tuğba. “Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 9/1 (April 2018), 1-30. https://doi.org/10.16949/turkbilmat.333678.
JAMA Horzum T. Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2018;9:1–30.
MLA Horzum, Tuğba. “Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 9, no. 1, 2018, pp. 1-30, doi:10.16949/turkbilmat.333678.
Vancouver Horzum T. Matematik Öğretmeni Adaylarının Dörtgenler Hakkındaki Anlamalarının Kavram Haritası Aracılığıyla İncelenmesi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2018;9(1):1-30.

Cited By