Research Article
BibTex RIS Cite

A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan

Year 2023, , 50 - 60, 30.06.2023
https://doi.org/10.51435/turkjac.1302873

Abstract

Iron and copper ions detection are very important for environmental and biological processes. In this work, novel pyrene-functionalized Schiff base chitosan (Chit-Pyr) was synthesized, and this hybrid material was used as a “turn-off” fluorescence sensor for the detection of Fe2+, Fe3+, and Cu2+ ions. FTIR, UV-Vis, TGA, and SEM were used to examine for structural, thermal, and morphological properties of Chit-Pyr. This sensor exhibited a selectivity towards Fe2+, Fe3+, and Cu2+ ions among several common metal cations in the DMF dispersion. The results obtained that the proposed “turn off” fluorescence sensing mechanism of Chit-Pyr was simple and sensitive for the determination of Fe2+, Fe3+, and Cu2+ ions.

References

  • P. Kumar, V. Kumar, R. Gupta, Arene-based fluorescent probes for the selective detection of iron, RSC Adv, 5, 2015, 97874–97882.
  • X. Zhu, Y. Duan, P. Li, H. Fan, T. Han, X. Huang, A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(iii), iron(ii), and copper(ii) ions, Anal Methods, 11, 2019, 642–647.
  • G.J. Park, G. R. You, Y. W. Choi, C. Kim, A naked-eye chemosensor for simultaneous detection of iron and copper ions and its copper complex for colorimetric/fluorescent sensing of cyanide, Sensor Actuat B-Chem, 229, 2016, 257–271.
  • G. T. Selvan, C. Varadaraju, R. T. Selvan, I. V. M. V. Enoch, P. M. Selvakumar, On/Off Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions: Molecular Logic Operation and Protein Binding, ACS Omega, 3, 2018, 7985–7992.
  • A. Parsaei-Khomami, A. Badiei, Z. S. Ghavami, J. B. Ghasemi, A new fluorescence probe for simultaneous determination of Fe2+ and Fe3+ by orthogonal signal correction-principal component regression, J Mol Struct, 1252, 2022, 131978.
  • A. Paterek, U. Mackiewicz, M. Mączewski, Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities, J Cell Physiol 234, 2019, 21613–21629.
  • J. Kaplan, D. M. Ward, R. J. Crisp, C. C. Philpott, Iron-dependent metabolic remodeling in S. cerevisiae, Biochim Biophys Acta-Mol. Cell Res, 1763, 2006, 646–651.
  • K. Pantopoulos, S. K. Porwal, A. Tartakoff, L. Devireddy, Mechanisms of Mammalian Iron Homeostasis, Biochem, 51, 2012, 5705–5724.
  • A. M. Şenol, Y. Onganer, K. Meral, An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine, Sens Actuat B-Chem, 239, 2017, 343–351.
  • S. O. Tümay, S.Y. Sarıkaya, S. Yeşilot, Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples, J Lumin, 196, 2018, 126–135.
  • S. O. Tümay, M. H. Irani-nezhad, A. Khataee, Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples, J Photoc Photobio A, 402, 2020, 112819.
  • S. O. Tümay, E. Okutan, I. F. Sengul, E. Özcan, H. Kandemir, T. Doruk, M. Çetin, B. Çoşut, Naked-eye fluorescent sensor for Cu(II) based on indole conjugate BODIPY dye, Polyhedron, 117, 2016, 161–171.
  • Z. Khoshbin, M. R. Housaindokht, A. Verdian, M. R. Bozorgmehr, Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors, Biosens Bioelectron, 116, 2018, 130–147.
  • S. García-Marco, A. Torreblanca, J.J. Lucena, Chromatographic Determination of Fe Chelated by Ethylenediamine-N-(o-hydroxyphenylacetic)-N‘-(p-hydroxyphenylacetic) Acid in Commercial EDDHA/Fe3+ Fertilizers, J Agr Food Chem, 5, 2006, 1380–1386.
  • N. Scheers, T. Andlid, M. Alminger, A. S. Sandberg, Determination of Fe2+ and Fe3+ in Aqueous Solutions Containing Food Chelators by Differential Pulse Anodic Stripping Voltammetry, Electroanal, 22, 2010, 1090–1096.
  • R. Ferreira, J. Chaar, M. Baldan, N. Braga, Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes, Fuel, 291, 2021, 120104.
  • Y. Guo, N. Huang, B. Yang, C. Wang, H. Zhuang, Q. Tian, Z. Zhai, L. Liu, X. Jiang, Hybrid diamond/graphite films as electrodes for anodic stripping voltammetry of trace Ag+ and Cu2+, Sens Actuat B-Chem, 231, 2016, 194–202.
  • E. Bakkaus, R. N. Collins, J.-L. Morel, B. Gouget, Anion exchange liquid chromatography–inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid, J Chromatogr A, 1129, 2006, 208–215.
  • A. Spolaor, P. Vallelonga, J. Gabrieli, G. Cozzi, C. Boutron, C. Barbante, Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples, J Anal Atom Spectrom, 27, 2012, 310–317.
  • M. Yaman, G. Kaya, Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry, Anal Chim Acta, 540, 2005, 77–81.
  • M. Ghaedi, K. Niknam, K. Taheri, H. Hossainian, M. Soylak, Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16, Food Chem Toxicol, 48, 2010, 891–897.
  • T. Verma, P. Verma, U. P. Singh, A multi responsive phosphonic acid based fluorescent sensor for sensing Fe3+, benzaldehyde and antibiotics, Microchem J, 191, 2023, 108771.
  • S. H. Park, N. Kwon, J. H. Lee, J. Yoon, I. Shin, Synthetic ratiometric fluorescent probes for detection of ions, Chem Soc Rev, 49, 2020, 143–179.
  • W. Wang, L. Chai, X. Chen, Z. Li, L. Feng, W. Hu, H. Li, G. Yang, Imaging changes in the polarity of lipid droplets during NAFLD-Induced ferroptosis via a red-emitting fluorescent probe with a large Stokes shift, Biosens Bioelectron, 231, 2023, 115289.
  • P. R. Yaashikaa, P. S. Kumar, S. Karishma, Review on biopolymers and composites – Evolving material as adsorbents in removal of environmental pollutants, Environ Res, 212, 2022, 113114.
  • A. Das, T. Ringu, S. Ghosh, N. Pramanik, A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers, Polym Bull, 2022, 1–66.
  • M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R. S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review, Carbohyd Polym, 251, 2021, 116986.
  • W. Wang, C. Xue, X. Mao, Chitosan: Structural modification, biological activity and application, Int J Biol Macromol, 164, 2020, 4532–4546.
  • R. Priyadarshi, J.W. Rhim, Chitosan-based biodegradable functional films for food packaging applications, Innov Food Sci Emerg, 62, 2020, 102346.
  • Y. Chen, Y. Liu, Q. Dong, C. Xu, S. Deng, Y. Kang, M. Fan, L. Li, Application of functionalized chitosan in food: A review, Int J Biol Macromol, 235, 2023, 123716.
  • P. S. B, D. Selvakumar, K. Kadirvelu, N. S. Kumar, Chitosan as an environment friendly biomaterial – a review on recent modifications and applications, Int J Biol Macromol, 150, 2020, 1072–1083.
  • M. Zhang, F. Zhang, C. Li , H. An, T. Wan, P. Zhang, Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture, Polymers-Basel, 14, 2022, 958.
  • R. Jayakumar, M. Prabaharan, S.V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications, Prog Mater Sci, 55, 2010, 675–709.
  • B. I. Andreica, X. Cheng, L. Marin, Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization, Eur Polym J, 139, 2020, 110016.
  • H. A.Alidağı, S. O. Tümay, A. Şenocak, S. Yeşilot, Pyrene functionalized cyclotriphosphazene-based dyes: Synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds, Dyes Pigments, 153, 2018, 172–181.
  • V. Kumar, B. Sk, S. Kundu, A.Patra, Dynamic and static excimer: a versatile platform for single component white-light emission and chelation-enhanced fluorescence, J Mater Chem C, 6, 2018, 12086–12094.
  • L. Gai, H. Chen, B. Zou, H. Lu, G. Lai, Z. Li, Z. Shen, Ratiometric fluorescence chemodosimeters for fluoride anion based on pyrene excimer/monomer transformation, Chem Commun, 48, 2012, 10721–10723.
  • M. Belovari, D. Nestić, I. Marić, D. Majhen, M. Cametti, Z. Džolić, Photophysical characterization and the self-assembly properties of mono- and bis-pyrene derivatives for cell imaging applications, New J Chem, 46, 2022, 22518–22524.
  • S. Jatunov, A. Franconetti, R. Prado-Gotor, A. Heras, M. Mengíbar, F. Cabrera-Escribano, Fluorescent imino and secondary amino chitosans as potential sensing biomaterials, Carbohyd Polym, 123, 2015, 288–296.
  • A. Franconetti, P. Domínguez-Rodríguez, D. Lara-García, R. Prado-Gotor, F. Cabrera-Escribano, Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation, Appl Catal A-Gen, 517, 2016, 176–186.
  • P. Sirajunnisa, C. Sabna, A. Aswin, S. Prathapan, G. S. Sailaja, Lawsone-bentonite hybrid systems for pH-dependent sustained release of ciprofloxacin, New J Chem, 46, 2022, 9560–9571.
  • H. M. Lee, M. H. Kim, Y. I. Yoon, W. H. Park, Fluorescent Property of Chitosan Oligomer and Its Application as a Metal Ion Sensor, Mar Drugs, 15, 2017, 105.
  • D. Wang, L. Marin, X. Cheng, Fluorescent chitosan-BODIPY macromolecular chemosensors for detection and removal of Hg2+ and Fe3+ ions, Int J Biol Macromol, 198, 2022, 194–203.
  • Z. Meng, Z. Wang, Y. Liang, G. Zhou, X. Li, X. Xu, Y. Yang, S. Wang, A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption, Int J Biol Macromol, 239, 2023, 124261.
  • S. O. Tümay, V. Şanko, E. Demirbaş, A. Şenocak, Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples, Food Chem Toxicol, 146, 2020, 11184.
  • M. A. Ahghari, M. R. Ahghari, M. Kamalzare, A. Maleki, Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO3 bionanocomposite and study its antibacterial activity, Sci Rep-UK, 12, 2022, 10491.
  • T. Jiang, C. Wang, W. Liu, Y. Li, Y. Luan, P. Liu, Optimization and characterization of lemon essential oil entrapped from chitosan/cellulose nanocrystals microcapsules, J Appl Polym Sci, 138, 2021, 51265.
  • S. O. Tümay, V. Şanko, A. Şenocak, E. Demirbaş, A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg2+ ions in environmental samples, New J Chem, 45, 2021, 14495–14507.
  • H. Ardic Alidagi, S. O. Tümay, A. Şenocak, Ö. F. Çiftbudak, B. Çoşut, S. Yeşilot, Constitutional isomers of dendrimer-like pyrene substituted cyclotriphosphazenes: synthesis, theoretical calculations, and use as fluorescence receptors for the detection of explosive nitroaromatics, New J Chem, 43, 2019, 16738–16747.
  • P. K. Lekha, E. Prasad, Tunable Emission of Static Excimer in a Pyrene-Modified Polyamidoamine Dendrimer Aggregate through Positive Solvatochromism, Eur J Chem, 17, 2011, 8609–8617.
  • H. Gupta, K. Kaur, R. Singh, V. Kaur, Chitosan Schiff base for the spectrofluorimetric analysis of E-waste toxins: Pentabromophenol, Fe3+, and Cu2+ ions, Cellulose, 30, 2023, 1381–1397.
  • [52] T. Sun, Q. Niu, T. Li, Z. Guo, H. Liu, A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~100% aqueous media and application to real samples, Spectrochim Acta A, 188, 2018, 411–417.
Year 2023, , 50 - 60, 30.06.2023
https://doi.org/10.51435/turkjac.1302873

Abstract

References

  • P. Kumar, V. Kumar, R. Gupta, Arene-based fluorescent probes for the selective detection of iron, RSC Adv, 5, 2015, 97874–97882.
  • X. Zhu, Y. Duan, P. Li, H. Fan, T. Han, X. Huang, A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron(iii), iron(ii), and copper(ii) ions, Anal Methods, 11, 2019, 642–647.
  • G.J. Park, G. R. You, Y. W. Choi, C. Kim, A naked-eye chemosensor for simultaneous detection of iron and copper ions and its copper complex for colorimetric/fluorescent sensing of cyanide, Sensor Actuat B-Chem, 229, 2016, 257–271.
  • G. T. Selvan, C. Varadaraju, R. T. Selvan, I. V. M. V. Enoch, P. M. Selvakumar, On/Off Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions: Molecular Logic Operation and Protein Binding, ACS Omega, 3, 2018, 7985–7992.
  • A. Parsaei-Khomami, A. Badiei, Z. S. Ghavami, J. B. Ghasemi, A new fluorescence probe for simultaneous determination of Fe2+ and Fe3+ by orthogonal signal correction-principal component regression, J Mol Struct, 1252, 2022, 131978.
  • A. Paterek, U. Mackiewicz, M. Mączewski, Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities, J Cell Physiol 234, 2019, 21613–21629.
  • J. Kaplan, D. M. Ward, R. J. Crisp, C. C. Philpott, Iron-dependent metabolic remodeling in S. cerevisiae, Biochim Biophys Acta-Mol. Cell Res, 1763, 2006, 646–651.
  • K. Pantopoulos, S. K. Porwal, A. Tartakoff, L. Devireddy, Mechanisms of Mammalian Iron Homeostasis, Biochem, 51, 2012, 5705–5724.
  • A. M. Şenol, Y. Onganer, K. Meral, An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine, Sens Actuat B-Chem, 239, 2017, 343–351.
  • S. O. Tümay, S.Y. Sarıkaya, S. Yeşilot, Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples, J Lumin, 196, 2018, 126–135.
  • S. O. Tümay, M. H. Irani-nezhad, A. Khataee, Design of novel anthracene-based fluorescence sensor for sensitive and selective determination of iron in real samples, J Photoc Photobio A, 402, 2020, 112819.
  • S. O. Tümay, E. Okutan, I. F. Sengul, E. Özcan, H. Kandemir, T. Doruk, M. Çetin, B. Çoşut, Naked-eye fluorescent sensor for Cu(II) based on indole conjugate BODIPY dye, Polyhedron, 117, 2016, 161–171.
  • Z. Khoshbin, M. R. Housaindokht, A. Verdian, M. R. Bozorgmehr, Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors, Biosens Bioelectron, 116, 2018, 130–147.
  • S. García-Marco, A. Torreblanca, J.J. Lucena, Chromatographic Determination of Fe Chelated by Ethylenediamine-N-(o-hydroxyphenylacetic)-N‘-(p-hydroxyphenylacetic) Acid in Commercial EDDHA/Fe3+ Fertilizers, J Agr Food Chem, 5, 2006, 1380–1386.
  • N. Scheers, T. Andlid, M. Alminger, A. S. Sandberg, Determination of Fe2+ and Fe3+ in Aqueous Solutions Containing Food Chelators by Differential Pulse Anodic Stripping Voltammetry, Electroanal, 22, 2010, 1090–1096.
  • R. Ferreira, J. Chaar, M. Baldan, N. Braga, Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes, Fuel, 291, 2021, 120104.
  • Y. Guo, N. Huang, B. Yang, C. Wang, H. Zhuang, Q. Tian, Z. Zhai, L. Liu, X. Jiang, Hybrid diamond/graphite films as electrodes for anodic stripping voltammetry of trace Ag+ and Cu2+, Sens Actuat B-Chem, 231, 2016, 194–202.
  • E. Bakkaus, R. N. Collins, J.-L. Morel, B. Gouget, Anion exchange liquid chromatography–inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid, J Chromatogr A, 1129, 2006, 208–215.
  • A. Spolaor, P. Vallelonga, J. Gabrieli, G. Cozzi, C. Boutron, C. Barbante, Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples, J Anal Atom Spectrom, 27, 2012, 310–317.
  • M. Yaman, G. Kaya, Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry, Anal Chim Acta, 540, 2005, 77–81.
  • M. Ghaedi, K. Niknam, K. Taheri, H. Hossainian, M. Soylak, Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16, Food Chem Toxicol, 48, 2010, 891–897.
  • T. Verma, P. Verma, U. P. Singh, A multi responsive phosphonic acid based fluorescent sensor for sensing Fe3+, benzaldehyde and antibiotics, Microchem J, 191, 2023, 108771.
  • S. H. Park, N. Kwon, J. H. Lee, J. Yoon, I. Shin, Synthetic ratiometric fluorescent probes for detection of ions, Chem Soc Rev, 49, 2020, 143–179.
  • W. Wang, L. Chai, X. Chen, Z. Li, L. Feng, W. Hu, H. Li, G. Yang, Imaging changes in the polarity of lipid droplets during NAFLD-Induced ferroptosis via a red-emitting fluorescent probe with a large Stokes shift, Biosens Bioelectron, 231, 2023, 115289.
  • P. R. Yaashikaa, P. S. Kumar, S. Karishma, Review on biopolymers and composites – Evolving material as adsorbents in removal of environmental pollutants, Environ Res, 212, 2022, 113114.
  • A. Das, T. Ringu, S. Ghosh, N. Pramanik, A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers, Polym Bull, 2022, 1–66.
  • M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R. S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review, Carbohyd Polym, 251, 2021, 116986.
  • W. Wang, C. Xue, X. Mao, Chitosan: Structural modification, biological activity and application, Int J Biol Macromol, 164, 2020, 4532–4546.
  • R. Priyadarshi, J.W. Rhim, Chitosan-based biodegradable functional films for food packaging applications, Innov Food Sci Emerg, 62, 2020, 102346.
  • Y. Chen, Y. Liu, Q. Dong, C. Xu, S. Deng, Y. Kang, M. Fan, L. Li, Application of functionalized chitosan in food: A review, Int J Biol Macromol, 235, 2023, 123716.
  • P. S. B, D. Selvakumar, K. Kadirvelu, N. S. Kumar, Chitosan as an environment friendly biomaterial – a review on recent modifications and applications, Int J Biol Macromol, 150, 2020, 1072–1083.
  • M. Zhang, F. Zhang, C. Li , H. An, T. Wan, P. Zhang, Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture, Polymers-Basel, 14, 2022, 958.
  • R. Jayakumar, M. Prabaharan, S.V. Nair, S. Tokura, H. Tamura, N. Selvamurugan, Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications, Prog Mater Sci, 55, 2010, 675–709.
  • B. I. Andreica, X. Cheng, L. Marin, Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization, Eur Polym J, 139, 2020, 110016.
  • H. A.Alidağı, S. O. Tümay, A. Şenocak, S. Yeşilot, Pyrene functionalized cyclotriphosphazene-based dyes: Synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds, Dyes Pigments, 153, 2018, 172–181.
  • V. Kumar, B. Sk, S. Kundu, A.Patra, Dynamic and static excimer: a versatile platform for single component white-light emission and chelation-enhanced fluorescence, J Mater Chem C, 6, 2018, 12086–12094.
  • L. Gai, H. Chen, B. Zou, H. Lu, G. Lai, Z. Li, Z. Shen, Ratiometric fluorescence chemodosimeters for fluoride anion based on pyrene excimer/monomer transformation, Chem Commun, 48, 2012, 10721–10723.
  • M. Belovari, D. Nestić, I. Marić, D. Majhen, M. Cametti, Z. Džolić, Photophysical characterization and the self-assembly properties of mono- and bis-pyrene derivatives for cell imaging applications, New J Chem, 46, 2022, 22518–22524.
  • S. Jatunov, A. Franconetti, R. Prado-Gotor, A. Heras, M. Mengíbar, F. Cabrera-Escribano, Fluorescent imino and secondary amino chitosans as potential sensing biomaterials, Carbohyd Polym, 123, 2015, 288–296.
  • A. Franconetti, P. Domínguez-Rodríguez, D. Lara-García, R. Prado-Gotor, F. Cabrera-Escribano, Native and modified chitosan-based hydrogels as green heterogeneous organocatalysts for imine-mediated Knoevenagel condensation, Appl Catal A-Gen, 517, 2016, 176–186.
  • P. Sirajunnisa, C. Sabna, A. Aswin, S. Prathapan, G. S. Sailaja, Lawsone-bentonite hybrid systems for pH-dependent sustained release of ciprofloxacin, New J Chem, 46, 2022, 9560–9571.
  • H. M. Lee, M. H. Kim, Y. I. Yoon, W. H. Park, Fluorescent Property of Chitosan Oligomer and Its Application as a Metal Ion Sensor, Mar Drugs, 15, 2017, 105.
  • D. Wang, L. Marin, X. Cheng, Fluorescent chitosan-BODIPY macromolecular chemosensors for detection and removal of Hg2+ and Fe3+ ions, Int J Biol Macromol, 198, 2022, 194–203.
  • Z. Meng, Z. Wang, Y. Liang, G. Zhou, X. Li, X. Xu, Y. Yang, S. Wang, A naphthalimide functionalized chitosan-based fluorescent probe for specific detection and efficient adsorption, Int J Biol Macromol, 239, 2023, 124261.
  • S. O. Tümay, V. Şanko, E. Demirbaş, A. Şenocak, Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples, Food Chem Toxicol, 146, 2020, 11184.
  • M. A. Ahghari, M. R. Ahghari, M. Kamalzare, A. Maleki, Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO3 bionanocomposite and study its antibacterial activity, Sci Rep-UK, 12, 2022, 10491.
  • T. Jiang, C. Wang, W. Liu, Y. Li, Y. Luan, P. Liu, Optimization and characterization of lemon essential oil entrapped from chitosan/cellulose nanocrystals microcapsules, J Appl Polym Sci, 138, 2021, 51265.
  • S. O. Tümay, V. Şanko, A. Şenocak, E. Demirbaş, A hybrid nanosensor based on novel fluorescent iron oxide nanoparticles for highly selective determination of Hg2+ ions in environmental samples, New J Chem, 45, 2021, 14495–14507.
  • H. Ardic Alidagi, S. O. Tümay, A. Şenocak, Ö. F. Çiftbudak, B. Çoşut, S. Yeşilot, Constitutional isomers of dendrimer-like pyrene substituted cyclotriphosphazenes: synthesis, theoretical calculations, and use as fluorescence receptors for the detection of explosive nitroaromatics, New J Chem, 43, 2019, 16738–16747.
  • P. K. Lekha, E. Prasad, Tunable Emission of Static Excimer in a Pyrene-Modified Polyamidoamine Dendrimer Aggregate through Positive Solvatochromism, Eur J Chem, 17, 2011, 8609–8617.
  • H. Gupta, K. Kaur, R. Singh, V. Kaur, Chitosan Schiff base for the spectrofluorimetric analysis of E-waste toxins: Pentabromophenol, Fe3+, and Cu2+ ions, Cellulose, 30, 2023, 1381–1397.
  • [52] T. Sun, Q. Niu, T. Li, Z. Guo, H. Liu, A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~100% aqueous media and application to real samples, Spectrochim Acta A, 188, 2018, 411–417.
There are 52 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

İpek Ömeroğlu 0000-0002-7528-0911

Vildan Şanko 0000-0003-0331-5967

Publication Date June 30, 2023
Submission Date May 26, 2023
Acceptance Date June 8, 2023
Published in Issue Year 2023

Cite

APA Ömeroğlu, İ., & Şanko, V. (2023). A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. Turkish Journal of Analytical Chemistry, 5(1), 50-60. https://doi.org/10.51435/turkjac.1302873
AMA Ömeroğlu İ, Şanko V. A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. TurkJAC. June 2023;5(1):50-60. doi:10.51435/turkjac.1302873
Chicago Ömeroğlu, İpek, and Vildan Şanko. “A ‘Turn off’ Fluorescence Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on Novel Pyrene-Functionalized Chitosan”. Turkish Journal of Analytical Chemistry 5, no. 1 (June 2023): 50-60. https://doi.org/10.51435/turkjac.1302873.
EndNote Ömeroğlu İ, Şanko V (June 1, 2023) A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. Turkish Journal of Analytical Chemistry 5 1 50–60.
IEEE İ. Ömeroğlu and V. Şanko, “A ‘Turn off’ fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan”, TurkJAC, vol. 5, no. 1, pp. 50–60, 2023, doi: 10.51435/turkjac.1302873.
ISNAD Ömeroğlu, İpek - Şanko, Vildan. “A ‘Turn off’ Fluorescence Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on Novel Pyrene-Functionalized Chitosan”. Turkish Journal of Analytical Chemistry 5/1 (June 2023), 50-60. https://doi.org/10.51435/turkjac.1302873.
JAMA Ömeroğlu İ, Şanko V. A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. TurkJAC. 2023;5:50–60.
MLA Ömeroğlu, İpek and Vildan Şanko. “A ‘Turn off’ Fluorescence Sensor for Fe2+, Fe3+, and Cu2+ Ions Based on Novel Pyrene-Functionalized Chitosan”. Turkish Journal of Analytical Chemistry, vol. 5, no. 1, 2023, pp. 50-60, doi:10.51435/turkjac.1302873.
Vancouver Ömeroğlu İ, Şanko V. A “Turn off” fluorescence sensor for Fe2+, Fe3+, and Cu2+ ions based on novel pyrene-functionalized chitosan. TurkJAC. 2023;5(1):50-6.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/