Research Article
BibTex RIS Cite

Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination

Year 2019, Volume: 1 Issue: 1, - , 11.12.2019

Abstract

Abstract: Four new dipicolylamine compounds carrying
anthracene, naphthalene, pyrene and phenanthrene groups were synthesized, and
their ion sensor properties were studied by means of emission spectrometry in
ethanol-water (1:1). It was disclosed that among a series of studied anions and
cations, only with Cd2+, Zn2+, Cu2+ and Hg2+
cations, ligands formed complexes selectively. With spectrofluorimetric
measurements, the complexation stoichiometry and the complex stability
constants of the formed complexes were determined. A linear range from 0.10 µg
L-1 to0.15 mg L-1 where the fluorescence
intensity of the phenanthrene
derivative compound showed a regular decrease with the increase of the Hg2+
ion concentration was obtained. The method developed for the
determination of Hg2+ was applied to tap water samples. In order to
eliminate the matrix effect, a modified standard addition method was used.
Detection
and quantification limits were 0.009 mg
L-1 and 0.027 mg L-1, respectively.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

114Z387

Thanks

The Scientific and Technological Research Council of Turkey (TUBITAK)

References

  • 1. L.M. Plum, L. Rink, H. Hajo. Int. J. Environ. The Essential Toxin: Impact of Zinc on Human Health. Res. Public Health.2010;7(4):1342-1365
  • 2. B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G.A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems.J. Biomed. Biotechnol. 2012. DOI: 10.1155/2012/949048.
  • 3. H. Refiker, M. Merdivan, R.S. Aygun. Selective Preconcentration of Gold from Ore Samples. Int. J. Anal. Chem., 2018, 7503202.
  • 4. M.R. Ganjali, L.H Babaei, A. Badiei, K. Saberian, S. Behbahani, G. M. Ziarani, M. Salavati- Niasari.A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry. Química Nova.2006;29(3):440-443. 5. K. Pyrzynska, T. Wierzbicki. Solid-Phase Extraction for Preconcentration and Separation of Vanadium Species in Natural Waters. Microchim Acta. 2004;147(1-2):59-64.
  • 6. I.L. Alcantara, P.S. Roldan, G.R Castro, F.V. Moraes, F.A. Silva, C.C. Padilha, J.D. Oliveira, P.M. Padilha. Determination of Cadmium in River Water Samples by Flame AAS after On-line Preconcentration in Mini-Column Packed with 2-Aminothiazole-modified Silica Gel. Anal. Sci. 2004; 20(7):1029-1032. 7. V.A. Lemos, L.O. Dos Santos. A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 2014;149: 203-207.
  • 8. M. Ali. Preconcentration and Determination of Trace Amounts of Heavy Metals in Water Samples Using Membrane Disk and Flame Atomic Absorption Spectrometry. Chinese J. Chem., 2007;25(5): 640-644.
  • 9. N. Altunay, R. Gürkan. A simple and efficient approach for preconcentration of some heavy metals in cosmetic products before their determinations by flame atomic absorption spectrometry. Turk. J. Chem. 2016, 40: 988–1001.
  • 10. B. Valeur, I. Leray. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000; 205(1):3-40.
  • 11. L.G. Pathberiya, N. Barlow, T. Nguyen, B. Graham, K.L. Tuck. Facile, divergent route to bis-Zn(II)dipicolylamine type chemosensors for pyrophosphate. Tetrahedron. 2012;68(46): 9435-9439.
  • 12. J.H. Kim, J.Y. Noh, I.H. Hwang, J. Kang, J. Kim, C. Kim. An anthracene-based fluorescent chemosensor for Zn2+ Tetrahedron Lett. 2013;54(19): 2415-2418. 13. A. Coskun, M. Deniz Yilmaz, E.U. Akkaya. An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cationsTetrahedron Lett. 2006; 47(22) :3689-3691.
  • 14. H. Lee, R.D. Hancock, H.S. Lee. Role of Fluorophore–Metal Interaction in Photoinduced Electron Transfer (PET) Sensors: Time-Dependent Density Functional Theory (TDDFT) Study. J. Phys. Chem. A. 2013; 117(50): 13345-13355.15. A. Ojida, Y. Mito-Oka, M.A. Inoue, I. Hamachi. First Artificial Receptors and Chemosensors toward Phosphorylated Peptide in Aqueous Solution. J. Am. Chem. Soc. 2002; 124(22):6256-6255 16. K.H. Chen, J.S. Yang, C.Y. Hwang, J.M. Fang. Phospholipid-Induced Aggregation and Anthracene Excimer Formation. Org. Lett. 2008; 10(20): 4401-4404.
  • 17. T. Sakamoto, A. Ojida, I. Hamachi. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)–Dpa complexes. Chem. Commun. (Camb). 2009;(2):141-152.
  • 18. J.F. Zhang, S. Kim, J.H. Han, S.J. Lee, T. Pradhan, Q.Y. Cao, S.J. Lee, C. Kang, J.S. Kim. Pyrophosphate-Selective Fluorescent Chemosensor Based on 1,8-Naphthalimide–DPA–Zn(II) Complex and Its Application for Cell Imaging.Org. Lett. 2011;13(19): 5294-5297.19. S. Watanabe, K. Ohtsuka, S. Sato, S. Takenaka. Discrimination of phosphorylated double stranded DNA by naphthalene diimide having zinc(II) dipicolylamine complexes. Bioorganic Med. Chem. 2011; 19(3): 1361-1365.
  • 20. M.J. Kim, K.M.K. Swamy, K.M. Lee, A.R. Jagdale, Y. Kim, S.-J. Kim, K.H. Yoo, J. Yoon. Pyrophosphate selective fluorescent chemosensors based on coumarin–DPA–Cu(II) complexes. Chem. Commun. (Camb). 2009;(46): 7215-7217.
  • 21. J. Hatai, S. Bandyopadhyay, Chem. Commun. (Camb). Altered selectivity of a dipicolylamine based metal ion receptor. 2014; (50): 64-66.
  • 22. S.K. Lee, M.G. Choi, J. Choi, S.K. Chang. Fluorescence signaling of Zn2+ levels in synthetic urine by dipicolylamine-armed hydroxynaphthalimide. Sensors Actuators, B Chem.2015; 207: 303-307.
  • 23. K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc Chem. Soc.2007;129(44):13447-13454.
  • 24. E. Vanlı, M.N. Mısır, H. Alp, T. Ak, N. Özbek, Ü. Ocak, M. Ocak. Ion Sensor Properties of Fluorescent Schiff Bases Carrying Dipicolylamine Groups. A Simple Spectrofluorimetric Method to Determine Cu (II) in Water Samples. J. Fluoresc. 2017; 27(5): 1759-1766.
  • 25. J. Bourson, B. Valeur. Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 1989; 93(9): 3871-3876.
  • 26. A. Başoğlu, G. Tosun, M. Ocak, H. Alp, N. Yaylı, Ü. Ocak. Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound. J. Agric. Food Chem. 2015; 63(10): 2654-2659.
  • 27. Y. Çağlar, E.T. Saka, H. Alp, H. Kantekin, Ü. Ocak, M. Ocak. A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III). J. Fluoresc. 2016; 26(4): 1381-1389.
  • 28. M. Ocak, T. Ak, A. Aktaş, N. Özbek, O.C.Çağılcı, A. Gümrükçüoğlu, H. Kantekin, Ü. Ocak, H. Alp. Metal Complexation Properties of Schiff Bases Containing 1,3,5-Triazine Derived from 2-Hydroxy-1-Naphthaldehyde in Solution. A Simple Spectrofluorimetric Method to Determine Mercury (II). J. Fluoresc.2017; 27(1): 59-68.
  • 29. N. Özbek, H. Alp, G. Çelik, T. Ak, O.C. Çağılcı, N. Yaylı, Ü. Ocak, M. Ocak. A SimpleSpectrofluorimetric Method for Iron Determination with a Chalcone-Based Schiff Base. J. Fluoresc. 2017; 27(2): 635-641.
  • 30. M.P. Hay, K.O. Hicks, K. Pchalek, H.H. Lee, A. Blaser, F.B. Pruijn, R.F Anderson, S.S. Shinde, W.R. Wilson, W.A. Denny. Tricyclic [1,2,4] Triazine 1,4-Dioxides As Hypoxia Selective Cytotoxins J. Med.Chem. 2008; 51(21): 6853-6865.
  • 31. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, Kluwer, New York, 1999.
Year 2019, Volume: 1 Issue: 1, - , 11.12.2019

Abstract

Project Number

114Z387

References

  • 1. L.M. Plum, L. Rink, H. Hajo. Int. J. Environ. The Essential Toxin: Impact of Zinc on Human Health. Res. Public Health.2010;7(4):1342-1365
  • 2. B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G.A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems.J. Biomed. Biotechnol. 2012. DOI: 10.1155/2012/949048.
  • 3. H. Refiker, M. Merdivan, R.S. Aygun. Selective Preconcentration of Gold from Ore Samples. Int. J. Anal. Chem., 2018, 7503202.
  • 4. M.R. Ganjali, L.H Babaei, A. Badiei, K. Saberian, S. Behbahani, G. M. Ziarani, M. Salavati- Niasari.A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry. Química Nova.2006;29(3):440-443. 5. K. Pyrzynska, T. Wierzbicki. Solid-Phase Extraction for Preconcentration and Separation of Vanadium Species in Natural Waters. Microchim Acta. 2004;147(1-2):59-64.
  • 6. I.L. Alcantara, P.S. Roldan, G.R Castro, F.V. Moraes, F.A. Silva, C.C. Padilha, J.D. Oliveira, P.M. Padilha. Determination of Cadmium in River Water Samples by Flame AAS after On-line Preconcentration in Mini-Column Packed with 2-Aminothiazole-modified Silica Gel. Anal. Sci. 2004; 20(7):1029-1032. 7. V.A. Lemos, L.O. Dos Santos. A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 2014;149: 203-207.
  • 8. M. Ali. Preconcentration and Determination of Trace Amounts of Heavy Metals in Water Samples Using Membrane Disk and Flame Atomic Absorption Spectrometry. Chinese J. Chem., 2007;25(5): 640-644.
  • 9. N. Altunay, R. Gürkan. A simple and efficient approach for preconcentration of some heavy metals in cosmetic products before their determinations by flame atomic absorption spectrometry. Turk. J. Chem. 2016, 40: 988–1001.
  • 10. B. Valeur, I. Leray. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000; 205(1):3-40.
  • 11. L.G. Pathberiya, N. Barlow, T. Nguyen, B. Graham, K.L. Tuck. Facile, divergent route to bis-Zn(II)dipicolylamine type chemosensors for pyrophosphate. Tetrahedron. 2012;68(46): 9435-9439.
  • 12. J.H. Kim, J.Y. Noh, I.H. Hwang, J. Kang, J. Kim, C. Kim. An anthracene-based fluorescent chemosensor for Zn2+ Tetrahedron Lett. 2013;54(19): 2415-2418. 13. A. Coskun, M. Deniz Yilmaz, E.U. Akkaya. An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cationsTetrahedron Lett. 2006; 47(22) :3689-3691.
  • 14. H. Lee, R.D. Hancock, H.S. Lee. Role of Fluorophore–Metal Interaction in Photoinduced Electron Transfer (PET) Sensors: Time-Dependent Density Functional Theory (TDDFT) Study. J. Phys. Chem. A. 2013; 117(50): 13345-13355.15. A. Ojida, Y. Mito-Oka, M.A. Inoue, I. Hamachi. First Artificial Receptors and Chemosensors toward Phosphorylated Peptide in Aqueous Solution. J. Am. Chem. Soc. 2002; 124(22):6256-6255 16. K.H. Chen, J.S. Yang, C.Y. Hwang, J.M. Fang. Phospholipid-Induced Aggregation and Anthracene Excimer Formation. Org. Lett. 2008; 10(20): 4401-4404.
  • 17. T. Sakamoto, A. Ojida, I. Hamachi. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)–Dpa complexes. Chem. Commun. (Camb). 2009;(2):141-152.
  • 18. J.F. Zhang, S. Kim, J.H. Han, S.J. Lee, T. Pradhan, Q.Y. Cao, S.J. Lee, C. Kang, J.S. Kim. Pyrophosphate-Selective Fluorescent Chemosensor Based on 1,8-Naphthalimide–DPA–Zn(II) Complex and Its Application for Cell Imaging.Org. Lett. 2011;13(19): 5294-5297.19. S. Watanabe, K. Ohtsuka, S. Sato, S. Takenaka. Discrimination of phosphorylated double stranded DNA by naphthalene diimide having zinc(II) dipicolylamine complexes. Bioorganic Med. Chem. 2011; 19(3): 1361-1365.
  • 20. M.J. Kim, K.M.K. Swamy, K.M. Lee, A.R. Jagdale, Y. Kim, S.-J. Kim, K.H. Yoo, J. Yoon. Pyrophosphate selective fluorescent chemosensors based on coumarin–DPA–Cu(II) complexes. Chem. Commun. (Camb). 2009;(46): 7215-7217.
  • 21. J. Hatai, S. Bandyopadhyay, Chem. Commun. (Camb). Altered selectivity of a dipicolylamine based metal ion receptor. 2014; (50): 64-66.
  • 22. S.K. Lee, M.G. Choi, J. Choi, S.K. Chang. Fluorescence signaling of Zn2+ levels in synthetic urine by dipicolylamine-armed hydroxynaphthalimide. Sensors Actuators, B Chem.2015; 207: 303-307.
  • 23. K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc Chem. Soc.2007;129(44):13447-13454.
  • 24. E. Vanlı, M.N. Mısır, H. Alp, T. Ak, N. Özbek, Ü. Ocak, M. Ocak. Ion Sensor Properties of Fluorescent Schiff Bases Carrying Dipicolylamine Groups. A Simple Spectrofluorimetric Method to Determine Cu (II) in Water Samples. J. Fluoresc. 2017; 27(5): 1759-1766.
  • 25. J. Bourson, B. Valeur. Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 1989; 93(9): 3871-3876.
  • 26. A. Başoğlu, G. Tosun, M. Ocak, H. Alp, N. Yaylı, Ü. Ocak. Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound. J. Agric. Food Chem. 2015; 63(10): 2654-2659.
  • 27. Y. Çağlar, E.T. Saka, H. Alp, H. Kantekin, Ü. Ocak, M. Ocak. A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III). J. Fluoresc. 2016; 26(4): 1381-1389.
  • 28. M. Ocak, T. Ak, A. Aktaş, N. Özbek, O.C.Çağılcı, A. Gümrükçüoğlu, H. Kantekin, Ü. Ocak, H. Alp. Metal Complexation Properties of Schiff Bases Containing 1,3,5-Triazine Derived from 2-Hydroxy-1-Naphthaldehyde in Solution. A Simple Spectrofluorimetric Method to Determine Mercury (II). J. Fluoresc.2017; 27(1): 59-68.
  • 29. N. Özbek, H. Alp, G. Çelik, T. Ak, O.C. Çağılcı, N. Yaylı, Ü. Ocak, M. Ocak. A SimpleSpectrofluorimetric Method for Iron Determination with a Chalcone-Based Schiff Base. J. Fluoresc. 2017; 27(2): 635-641.
  • 30. M.P. Hay, K.O. Hicks, K. Pchalek, H.H. Lee, A. Blaser, F.B. Pruijn, R.F Anderson, S.S. Shinde, W.R. Wilson, W.A. Denny. Tricyclic [1,2,4] Triazine 1,4-Dioxides As Hypoxia Selective Cytotoxins J. Med.Chem. 2008; 51(21): 6853-6865.
  • 31. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, Kluwer, New York, 1999.
There are 25 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Research Articles
Authors

Abidin Gümrükçüoğlu 0000-0001-7285-9664

Nurhayat Özbek This is me

Tuğba Ak This is me

Elvan Vanlı This is me

Miraç Ocak

Ümmuhan Ocak

Project Number 114Z387
Publication Date December 11, 2019
Submission Date October 16, 2019
Acceptance Date November 6, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Gümrükçüoğlu, A., Özbek, N., Ak, T., Vanlı, E., et al. (2019). Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination. Turkish Journal of Analytical Chemistry, 1(1).
AMA Gümrükçüoğlu A, Özbek N, Ak T, Vanlı E, Ocak M, Ocak Ü. Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination. TurkJAC. December 2019;1(1).
Chicago Gümrükçüoğlu, Abidin, Nurhayat Özbek, Tuğba Ak, Elvan Vanlı, Miraç Ocak, and Ümmuhan Ocak. “Schiff Bases Carrying Dipicolylamine Groups for Selective Determination of Metal Ions in Aqueous Media. A Phenanthrene-Based Fluorescent Sensor for Hg2+ Determination”. Turkish Journal of Analytical Chemistry 1, no. 1 (December 2019).
EndNote Gümrükçüoğlu A, Özbek N, Ak T, Vanlı E, Ocak M, Ocak Ü (December 1, 2019) Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination. Turkish Journal of Analytical Chemistry 1 1
IEEE A. Gümrükçüoğlu, N. Özbek, T. Ak, E. Vanlı, M. Ocak, and Ü. Ocak, “Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination”, TurkJAC, vol. 1, no. 1, 2019.
ISNAD Gümrükçüoğlu, Abidin et al. “Schiff Bases Carrying Dipicolylamine Groups for Selective Determination of Metal Ions in Aqueous Media. A Phenanthrene-Based Fluorescent Sensor for Hg2+ Determination”. Turkish Journal of Analytical Chemistry 1/1 (December 2019).
JAMA Gümrükçüoğlu A, Özbek N, Ak T, Vanlı E, Ocak M, Ocak Ü. Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination. TurkJAC. 2019;1.
MLA Gümrükçüoğlu, Abidin et al. “Schiff Bases Carrying Dipicolylamine Groups for Selective Determination of Metal Ions in Aqueous Media. A Phenanthrene-Based Fluorescent Sensor for Hg2+ Determination”. Turkish Journal of Analytical Chemistry, vol. 1, no. 1, 2019.
Vancouver Gümrükçüoğlu A, Özbek N, Ak T, Vanlı E, Ocak M, Ocak Ü. Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination. TurkJAC. 2019;1(1).