Research Article
BibTex RIS Cite

Morus nigra L. Yaprağından Elde Edilen Fitojenik Gümüş ve Bakır Nanopartikülleri Çok İşlevli Ajanlar Olarak: Antioksidan, Antidiyabetik, Antimikrobiyal ve Antikanser Etkisi

Year 2025, Volume: 7 Issue: 3, 321 - 337, 30.09.2025
https://doi.org/10.51435/turkjac.1738363

Abstract

Çevre dostu ve çok işlevli nanomalzemelerin artan arayışıyla yönlendirilen bu çalışma, alkali sulu koşullar altında Morus nigra yaprak özütü kullanılarak sentezlenen gümüş (YAgNP'ler) ve bakır nanopartiküllerinin (YCuNP'ler) çevre bilincine sahip üretimini, ayrıntılı analizini ve işbirlikçi antibakteriyel etkinliğini araştırmaktadır. Biyojenik yöntemlerle üretilen nanopartiküller, FTIR, XRD, TEM ve EDX enstrümantasyonu ile doğrulandığı gibi, bitki kaynaklı bileşiklerin kolaylaştırdığı etkili indirgeme ve stabilizasyonu öneren benzersiz fiziksel ve kimyasal özellikler göstermiştir.
Bu çalışmada sentezlenen YAgNP'ler ve YCuNP'ler, diyabet yönetimindeki olası rollerini vurgulayarak belirgin şekilde geliştirilmiş antioksidan kapasiteleri ve önemli α-amilaz ve α-glukozidaz inhibisyonu göstermiştir. Antimikrobiyal analizler, çözelti fazı analizlerinde YAgNP'lerin üstün aktivitesini gösterirken, YCuNP'ler katı difüzyon tabanlı kurulumlarda daha güçlü inhibisyon göstermiştir. Özellikle, E. coli ve S. aureus dahil olmak üzere birden fazla Gram-pozitif ve Gram-negatif suşta YAgNP'ler için daha düşük MIC ve MBC konsantrasyonları gözlemlendi. Dama tahtası testi, klinik olarak ilgili patojenlere karşı hem NP'ler hem de geleneksel antibiyotikler arasında güçlü sinerjik etkiler gösterdi. FICI değerleri, çeşitli kombinasyonlarda tam sinerjiyi doğruladı ve membran geçirgenliğini artırarak ve bakteriyel direnç mekanizmalarına müdahale ederek antibiyotik etkilerini güçlendirme yeteneklerini gösterdi.
YAgNP'ler ayrıca, IC₅₀ değerlerinin önemli ölçüde daha düşük olduğu HeLa ve HCT116 hücre hatlarına karşı kanser hücrelerine karşı önemli sitotoksik etkiler gösterdi ve onkolojik vaatlerini vurguladı. Genel olarak, çalışma yeşil sentezlenen nanopartiküllerin çeşitli terapötik uygulamalarını vurgular ve kanser tedavisinde ve antimikrobiyal ilaçlar için güçlendirici olarak potansiyel kullanımlarını önerir.

Ethical Statement

Bu çalışma, insan katılımcılar, hayvan deneyleri veya klinik araştırmalar içermediğinden etik kurul onayı gerektirmemektedir.

Supporting Institution

Gümüşhane University Scientific Research Projects Coordination Unit

Project Number

22.F5115.01.05

Thanks

The authors would like to express their sincere gratitude to the Gümüşhane University Scientific Research Projects Coordination Unit for their financial support of this study under Project Number [22.F5115.01.05].

References

  • World Health Organization. Antimicrobial resistance, 2023.
  • J. O’Neill, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, Wellcome Trust & HM Government, London, 2016.
  • A. Cassini, L.D. Högberg, D. Plachouras, A. Quattrocchi, A. Hoxha, G.S. Simonsen, M. Colomb-Cotinat, M.E. Kretzschmar, B. Devleesschauwer, M. Cecchini, D.A. Ouakrim, T.C. Oliveira, M.J. Struelens, C. Suetens, D.L. Monnet, Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect Dis, 2019, 19(1), 56–66.
  • E.D. Brown, G.D. Wright, Antibacterial drug discovery in the resistance era, Nature, 2016, 529(7586), 336–343.
  • M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol, 2012, 30(10), 499–511.
  • R. Beyth, N. Houri-Haddad, A. Domb, K. Wahid, Alternative antimicrobial approach: Nano-antimicrobial materials, Evid-Based Compl Alt, 2015, 2015, Article ID 246012.
  • S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem, 13(10), 2011, 2638–2650.
  • P. Singh, Y. Kim, D. Zhang, M. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol, 2018, 36(2), 140–149.
  • G.S. Keleşoğlu, M. Özdinçer, A. Dalmaz, K. Zenkin, S. Durmuş, Green synthesis and structural characterization of ZnO nanoparticle and ZnO@TiO₂ nanocomposite by Cinnamomum verum bark extract, Turk J Anal Chem, 2023, 5(2), 118–123.
  • S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J Radiat Res Appl Sci, 9(1), 2016, 1–7.
  • P. Singh, Y.J. Kim, D. Zhang, M. Yang, Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol, 2016, 34(7), 588–599.
  • B. Özçelik, A. Kara, Evaluation of biological activities of silver nanoparticles (AgNPs) synthesized by green nanotechnology from birch (Betula spp.) branches extract, Turk J Anal Chem, 2023, 5(2), 151–161.
  • T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, I.A. Rather, Application of nanotechnology in food science: perception and overview, Front Microbiol, 2017, 8, 1501.
  • O.O. Adeniji, N. Nontongana, J.C. Okoh, A.I. Okoh, The potential of antibiotics and nanomaterial combinations as therapeutic strategies in the management of multidrug-resistant infections: a review, Int J Mol Sci, 2022, 23(23), 15038.
  • S. Ercisli, E. Orhan, Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits, Food Chem, 2007, 103(4), 1380–1384.
  • M. Arfan, R. Khan, M. Rehman, A. Khan, Antioxidant activity of mulberry fruit extracts, Int J Mol Sci, 2012, 13(2), 2472–2480.
  • A. Kumar, K. Kaur, S. Sharma, Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra L. leaf extract, Indian J Pharm Biol Res, 2013, 1(4), 16–24.
  • N.E.H. Lezoul, M. Belkadi, F. Habibi, F. Guillén, Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants, Molecules, 2020, 25(20), 4672.
  • Ö. Karpuz, C. Baltacı, A. Gül, J. Gülen, P. Bozbeyoğlu, N. Aydoğan, Green synthesis of iron and silver nanoparticles from aqueous extract of buckwheat husk waste: antibacterial, cytotoxic, and dye decolorization properties, Biomass Conversion and Biorefinery, 1-33, 2024.
  • P.U. Ingle, J.K. Biswas, M. Mondal, M.K. Rai, P.S. Kumar, A.K. Gade, Assessment of in vitro antimicrobial efficacy of biologically synthesized metal nanoparticles against pathogenic bacteria, Chemosphere, 291, 2022, 132676.
  • V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am J Enol Vitic, 16(3), 1965, 144–158.
  • J.B. Johnson, J.S. Mani, M. Naiker, Development and validation of a 96-well microplate assay for the measurement of total phenolic content in ginger extracts, Food Anal Methods, 15(2), 2022, 413–420.
  • I.N. Beara, M.M. Lesjak, D.D. Četojević-Simin, Ž.S. Marjanović, J.D. Ristić, Z.O. Mrkonjić, N.M. Mimica-Dukić, Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles, Food Chem, 165, 2014, 460–466.
  • C. Soler‐Rivas, J.C. Espín, H.J. Wichers, An easy and fast test to compare total free radical scavenger capacity of foodstuffs, Phytochem Anal, 11(5), 2000, 330–338.
  • E.M. Silva, J.N.S. Souza, H. Rogez, J.F. Rees, Y. Larondelle, Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region, Food Chem, 101(3), 2007, 1012–1018.
  • Y.E. Kamış, B. Akar, C. Baltacı, Determination of physical, chemical and antioxidant properties of pomegranate sauces sold in Turkish markets, Turk J Anal Chem, 4(2), 2022, 67–75.
  • X.W. Yang, M.Z. Huang, Y.S. Jin, L.N. Sun, Y. Song, H.S. Chen, Phenolics from Bidens bipinnata and their amylase inhibitory properties, Fitoterapia, 83(7), 2012, 1169–1175.
  • T. Srisongkram, S. Waithong, T. Thitimetharoch, N. Weerapreeyakul, Machine learning and in vitro chemical screening of potential α-amylase and α-glucosidase inhibitors from Thai indigenous plants, Nutrients, 14(2), 2022, 267.
  • LSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • O. Akmeşe, T. Acet, K. Özcan, Elazığ İlinde Yetişen Morus nigra L.’nin Antioksidan ve Antimikrobiyal Aktivitelerinin ve Antibiyotiklerle Sinerjistik Etkisinin Belirlenmesi, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 2020, 983–995.
  • N. Didry, L. Dubreuil, M. Pinkas, Microbiological properties of protoanemonin isolated from Ranunculus bulbosus, Phytother Res, 7(1), 1993, 21–24.
  • S. van Vuuren, A. Viljoen, Plant-based antimicrobial studies – methods and approaches to study the interaction between natural products, Planta Med, 77(11), 2011, 1168–1182.
  • J.W. Lee, J.H. Wang, K.M. Ng, C.H. Tan, P. Rabina, S.S. Teo, In-vitro anticancer activity of Eucheuma cottonii extracts against HeLa cell line, human lung carcinoma cell line (SK-LU-1), human colon carcinoma cell line (HCT-116) and fibroblast, IJCMS, 1(2), 2015, 69–73.
  • A.L.B. Zeni, T.D. Moreira, A.P. Dalmagro, A. Camargo, L.A. Bini, E.L. Simionatto, D.R. Scharf, Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract, An Acad Bras Cienc, 89(4), 2017, 2805–2815.
  • A.M. Awwad, N.M. Salem, Green synthesis of silver nanoparticles by mulberry leaves extract, Nanoscience Nanotechnol., 2(4), 2012, 125–128.
  • L. Xu, W. Li, Q. Shi, H. Li, Z. Yang, D. Liao, J. Zhang, Synthesis of mulberry leaf extract mediated gold nanoparticles and their ameliorative effect on aluminium intoxicated and diabetic retinopathy in rats during perinatal life, J Photochem Photobiol B, 196, 2019, 111502.
  • C.Y. Rahimzadeh, A.A. Barzinjy, A.S. Mohammed, S.M. Hamad, Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles, PLoS One, 17(8), 2022, e0268184.
  • H.B.H. Rahuman, R. Dhandapani, V. Palanivel, S. Thangavelu, R. Paramasivam, S. Muthupandian, Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens, PloS one, 16(9), 2021, e0256748.
  • T. Kumkoon, M. Srisaisap, P. Boonserm, Biosynthesized silver nanoparticles using Morus alba (white mulberry) leaf extract as potential antibacterial and anticancer agents, Molecules, 28(3), 2023, 1213.
  • A. Alahmad, A. Feldhoff, N.C. Bigall, P. Rusch, T.Scheper, J.G. Walter, Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities, Nanomaterials, 11(2), 2021, 487.
  • É. da Silva Almeida, J.D.G. da Rocha, D. de Oliveira, D. Hotza, Valorization of noni-leaf tea as a by-product of nanofiltration for the green synthesis of copper oxide nanoparticles with improved antimicrobial properties, Mater Sci Eng B, 317, 2025, 118172.
  • T. Hahn, U, Shmueli, J.W. Arthur (Eds.), International tables for crystallography (Vol. 1, p. 182), 1983, Dordrecht: Reidel.
  • E.T. Assefa, G. Shumi, K.M. Gendo, G. Kenasa, N. Roba, Review on green synthesis, characterization and antibacterial activity of CuO nanoparticles using biomolecules of plant extract, Results Chem, 8, 2024, 101606.
  • R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation, Spectrochim Acta A Mol Biomol Spectrosc, 121, 2014, 746–750.
  • C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M.D. Balakumaran, P.T. Kalaichelvan, Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells, Biotechnol Rep, 4, 2014, 42–49.
  • R. Lotha, B.R. Shamprasad, N.S. Sundaramoorthy, S. Nagarajan, A. Sivasubramanian, Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@ CuNPs) inhibits MRSA biofilms, Microb Pathog, 132, 2019, 178–187.
  • A. Maniraj, M. Kannan, K. Rajarathinam, S. Vivekanandhan, S. Muthuramkumar, Green synthesis of silver nanoparticles and their effective utilization in fabricating functional surface for antibacterial activity against multi-drug resistant Proteus mirabilis, J Cluster Sci, 30, 2019, 1403–1414.
  • S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res Pharm Sci, 9(6), 2014, 385–406.
  • N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids Surf B Biointerfaces, 81(1), 2019, 81–86.
  • A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnology Advances, 31(2), 2013, 346–356.
  • S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J Colloid Interface Sci, 275(2), 2004, 496-502.
  • S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J Adv Res, 7(1), 2016, 17-28.
  • L.K. Kabeya, N.K. Ngombe, P.K. Mutwale, J.B. Safari, G.G. Matlou, R.W. Krause, C.I. Nkanga, Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste, Artif Cells Nanomed Biotechnol, 53(1), 2025, 29-42.
  • C. Pechyen, B. Tangnorawich, S. Toommee, R. Marks, Y. Parcharoen, Green synthesis of metal nanoparticles, characterization and biosensing applications, Sensors International, 2024, 100287.
  • Z. Bedlovičová, I. Strapáč, M. Baláž, A. Salayová, A brief overview on antioxidant activity determination of silver nanoparticles, Molecules, 25(14), 2020, 3191.
  • S.K. Chandraker, M.K. Ghosh, M. Lal, R. Shukla, A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications, Nano Express, 2(2), 2021, 022008.
  • S.V. Gudkov, D.E. Burmistrov, P.A. Fomina, S.Z. Validov, V.A. Kozlov, Antibacterial properties of CuO nanoparticles: A review, Int J Mol Sci, 25(21), 2024, 11563.
  • I.G. Munteanu, C. Apetrei, Analytical methods used in determining antioxidant activity: A review, Int J Mol Sci, 22(7), 2021, 3380.
  • A.M.E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review, Green Process Synth, 9(1), 2020, 304-339.
  • M.I. Kazeem, J.O. Adamson, I.A. Ogunwande, Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf, Biotechnol Res Int, 2013, Article ID 912012.
  • R. Perumalsamy, L. Krishnadhas, Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds, Appl Biochem Biotechnol, 194(3), 2022, 1136-1148.
  • D.A. Jamdade, D. Rajpali, K.A. Joshi, R. Kitture, A.S. Kulkarni, V.S. Shinde, J. Bellare, K.R. Babiya, S. Ghosh, Gnidia glauca‐and Plumbago zeylanica‐Mediated Synthesis of Novel Copper Nanoparticles as Promising Antidiabetic Agents, Adv Pharmacol Sci, 2019(1) 2019, 9080279.
  • C. Proença, M. Freitas, D. Ribeiro, E.F.T. Oliveira, J.L.C. Sousa, S.M. Tomé, M.J. Ramos , A.M.S. Silva, P.A. Fernandes, E. Fernandes, α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study, J Enzyme Inhib Med, 32(1), 2017, 1216-1228.
  • D. Das, J.K. Patra, N. Basavegowda, C.N.Vishnuprasad, H.S. Shin, Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam, Int J Nanomed, 2019, 4741-4754.
  • L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomed, 2017, 1227-1249.
  • K. Khorsandi, S. Keyvani-Ghamsari, F. Khatibi Shahidi, R. Hosseinzadeh, S. Kanwal, A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target, 29(9), 2021, 941-959.
  • N. Basavegowda, K.H. Baek, Multimetallic nanoparticles as alternative antimicrobial agents: challenges and perspectives, Molecules, 26(4), 2021, 912.
  • M. Lopez-Carrizales, K.I. Velasco, C. Castillo, A. Flores, M. Magaña, G.A. Martinez-Castanon, F. Martinez-Gutierrez, In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens, Antibiotics, 7(2), 2018, 50.
  • R. Vazquez-Muñoz, A. Meza-Villezcas, P.G.J. Fournier, E. Soria-Castro, K. Juarez-Moreno, A.L. Gallego-Hernández, N. Bogdanchikova, R. Vazquez-Duhalt A. Huerta-Saquero, Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane, PloS one, 14(11), 2019, e0224904.
  • A.S. Dove, D.I. Dzurny, W.R. Dees, N. Qin, C.C. Nunez Rodriguez, L.A. Alt, G: L. Ellward, J.A. Best, N.G. Rudawski, K. Fujii, D.M. Czyż, Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria, Frontiers in Microbiology, 13, 2023, 1064095.
  • A.L. Ulloa-Ogaz, H.A. Piñón-Castillo, L.N. Muñoz-Castellanos, M.S. Athie-García, M.D.L. Ballinas-Casarrubias, J.G. Murillo-Ramirez, L.A. Flores-Ongay, R. Duran, E. Orrantia-Borunda, Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs, Environ Sci Pollut Res, 24, 2017, 22048-22060.
  • L.K. Ruddaraju, S.V.N. Pammi, G. sankar Guntuku, V.S. Padavala, V.R.M. Kolapalli, A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations, Asian J Pharm Sci, 15(1), 2020, 42-59.
  • J.H. Quan, F.F. Gao, J.Q. Chu, G.H. Cha, J.M. Yuk, W. Wu, Y.H. Lee, Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells, Nanomedicine, 16(16), 2021, 1357-1375.
  • B. Zhu, Y. Li, Z. Lin, M. Zhao, T. Xu, C. Wang, N. Deng, Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways, Nanoscale Res Lett, 11, 2016, 1-8.
  • S. Gurunathan, M. Qasim, C. Park, H. Yoo, J.H. Kim, K. Hong, Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116, Int J Mol Sci, 19(8), 2018, 2269.

Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency

Year 2025, Volume: 7 Issue: 3, 321 - 337, 30.09.2025
https://doi.org/10.51435/turkjac.1738363

Abstract

Driven by the increasing pursuit of eco-friendly and multifunctional nanomaterials, this study explores the eco-conscious production, detailed analysis, and cooperative antibacterial efficacy of silver (YAgNPs) and copper nanoparticles (YCuNPs) synthesized using Morus nigra leaf extract under alkaline aqueous conditions. The nanoparticles produced through biogenic methods showed unique physical and chemical features, as validated via FTIR, XRD, TEM, and EDX instrumentation, suggesting effective reduction and stabilization facilitated by plant-derived compounds.
YAgNPs and YCuNPs synthesized in this study demonstrated markedly enhanced antioxidant capacities and significant α-amylase and α-glucosidase inhibition, highlighting their prospective role in diabetes management. Antimicrobial assays showed superior activity of YAgNPs in solution-phase assays, whereas YCuNPs showed stronger inhibition in solid diffusion-based setups. Notably, lower MIC and MBC concentrations were observed for YAgNPs across multiple Gram-positive and Gram-negative strains, including E. coli and S. aureus. The checkerboard assay demonstrated potent synergistic effects between both NPs and traditional antibiotics against clinically relevant pathogens. FICI values confirmed full synergy in several combinations, demonstrating their ability to potentiate antibiotic effects through membrane permeability enhancement and interference with bacterial resistance mechanisms.
YAgNPs also showed notable cytotoxic effects against cancer cells against HeLa and HCT116 cell lines, with IC₅₀ values significantly lower, highlighting their oncological promise. Overall, the study emphasizes the diverse therapeutic applications of green-synthesized nanoparticles and suggests their potential use in cancer treatment and as enhancers for antimicrobial drugs.

Ethical Statement

This study did not involve any human participants, animal experiments, or clinical trials. Therefore, ethical approval was not required.

Supporting Institution

Gümüşhane University Scientific Research Projects Coordination Unit

Project Number

22.F5115.01.05

References

  • World Health Organization. Antimicrobial resistance, 2023.
  • J. O’Neill, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, Wellcome Trust & HM Government, London, 2016.
  • A. Cassini, L.D. Högberg, D. Plachouras, A. Quattrocchi, A. Hoxha, G.S. Simonsen, M. Colomb-Cotinat, M.E. Kretzschmar, B. Devleesschauwer, M. Cecchini, D.A. Ouakrim, T.C. Oliveira, M.J. Struelens, C. Suetens, D.L. Monnet, Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect Dis, 2019, 19(1), 56–66.
  • E.D. Brown, G.D. Wright, Antibacterial drug discovery in the resistance era, Nature, 2016, 529(7586), 336–343.
  • M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends Biotechnol, 2012, 30(10), 499–511.
  • R. Beyth, N. Houri-Haddad, A. Domb, K. Wahid, Alternative antimicrobial approach: Nano-antimicrobial materials, Evid-Based Compl Alt, 2015, 2015, Article ID 246012.
  • S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem, 13(10), 2011, 2638–2650.
  • P. Singh, Y. Kim, D. Zhang, M. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol, 2018, 36(2), 140–149.
  • G.S. Keleşoğlu, M. Özdinçer, A. Dalmaz, K. Zenkin, S. Durmuş, Green synthesis and structural characterization of ZnO nanoparticle and ZnO@TiO₂ nanocomposite by Cinnamomum verum bark extract, Turk J Anal Chem, 2023, 5(2), 118–123.
  • S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J Radiat Res Appl Sci, 9(1), 2016, 1–7.
  • P. Singh, Y.J. Kim, D. Zhang, M. Yang, Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol, 2016, 34(7), 588–599.
  • B. Özçelik, A. Kara, Evaluation of biological activities of silver nanoparticles (AgNPs) synthesized by green nanotechnology from birch (Betula spp.) branches extract, Turk J Anal Chem, 2023, 5(2), 151–161.
  • T. Singh, S. Shukla, P. Kumar, V. Wahla, V.K. Bajpai, I.A. Rather, Application of nanotechnology in food science: perception and overview, Front Microbiol, 2017, 8, 1501.
  • O.O. Adeniji, N. Nontongana, J.C. Okoh, A.I. Okoh, The potential of antibiotics and nanomaterial combinations as therapeutic strategies in the management of multidrug-resistant infections: a review, Int J Mol Sci, 2022, 23(23), 15038.
  • S. Ercisli, E. Orhan, Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits, Food Chem, 2007, 103(4), 1380–1384.
  • M. Arfan, R. Khan, M. Rehman, A. Khan, Antioxidant activity of mulberry fruit extracts, Int J Mol Sci, 2012, 13(2), 2472–2480.
  • A. Kumar, K. Kaur, S. Sharma, Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra L. leaf extract, Indian J Pharm Biol Res, 2013, 1(4), 16–24.
  • N.E.H. Lezoul, M. Belkadi, F. Habibi, F. Guillén, Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants, Molecules, 2020, 25(20), 4672.
  • Ö. Karpuz, C. Baltacı, A. Gül, J. Gülen, P. Bozbeyoğlu, N. Aydoğan, Green synthesis of iron and silver nanoparticles from aqueous extract of buckwheat husk waste: antibacterial, cytotoxic, and dye decolorization properties, Biomass Conversion and Biorefinery, 1-33, 2024.
  • P.U. Ingle, J.K. Biswas, M. Mondal, M.K. Rai, P.S. Kumar, A.K. Gade, Assessment of in vitro antimicrobial efficacy of biologically synthesized metal nanoparticles against pathogenic bacteria, Chemosphere, 291, 2022, 132676.
  • V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am J Enol Vitic, 16(3), 1965, 144–158.
  • J.B. Johnson, J.S. Mani, M. Naiker, Development and validation of a 96-well microplate assay for the measurement of total phenolic content in ginger extracts, Food Anal Methods, 15(2), 2022, 413–420.
  • I.N. Beara, M.M. Lesjak, D.D. Četojević-Simin, Ž.S. Marjanović, J.D. Ristić, Z.O. Mrkonjić, N.M. Mimica-Dukić, Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles, Food Chem, 165, 2014, 460–466.
  • C. Soler‐Rivas, J.C. Espín, H.J. Wichers, An easy and fast test to compare total free radical scavenger capacity of foodstuffs, Phytochem Anal, 11(5), 2000, 330–338.
  • E.M. Silva, J.N.S. Souza, H. Rogez, J.F. Rees, Y. Larondelle, Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region, Food Chem, 101(3), 2007, 1012–1018.
  • Y.E. Kamış, B. Akar, C. Baltacı, Determination of physical, chemical and antioxidant properties of pomegranate sauces sold in Turkish markets, Turk J Anal Chem, 4(2), 2022, 67–75.
  • X.W. Yang, M.Z. Huang, Y.S. Jin, L.N. Sun, Y. Song, H.S. Chen, Phenolics from Bidens bipinnata and their amylase inhibitory properties, Fitoterapia, 83(7), 2012, 1169–1175.
  • T. Srisongkram, S. Waithong, T. Thitimetharoch, N. Weerapreeyakul, Machine learning and in vitro chemical screening of potential α-amylase and α-glucosidase inhibitors from Thai indigenous plants, Nutrients, 14(2), 2022, 267.
  • LSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • O. Akmeşe, T. Acet, K. Özcan, Elazığ İlinde Yetişen Morus nigra L.’nin Antioksidan ve Antimikrobiyal Aktivitelerinin ve Antibiyotiklerle Sinerjistik Etkisinin Belirlenmesi, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 2020, 983–995.
  • N. Didry, L. Dubreuil, M. Pinkas, Microbiological properties of protoanemonin isolated from Ranunculus bulbosus, Phytother Res, 7(1), 1993, 21–24.
  • S. van Vuuren, A. Viljoen, Plant-based antimicrobial studies – methods and approaches to study the interaction between natural products, Planta Med, 77(11), 2011, 1168–1182.
  • J.W. Lee, J.H. Wang, K.M. Ng, C.H. Tan, P. Rabina, S.S. Teo, In-vitro anticancer activity of Eucheuma cottonii extracts against HeLa cell line, human lung carcinoma cell line (SK-LU-1), human colon carcinoma cell line (HCT-116) and fibroblast, IJCMS, 1(2), 2015, 69–73.
  • A.L.B. Zeni, T.D. Moreira, A.P. Dalmagro, A. Camargo, L.A. Bini, E.L. Simionatto, D.R. Scharf, Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract, An Acad Bras Cienc, 89(4), 2017, 2805–2815.
  • A.M. Awwad, N.M. Salem, Green synthesis of silver nanoparticles by mulberry leaves extract, Nanoscience Nanotechnol., 2(4), 2012, 125–128.
  • L. Xu, W. Li, Q. Shi, H. Li, Z. Yang, D. Liao, J. Zhang, Synthesis of mulberry leaf extract mediated gold nanoparticles and their ameliorative effect on aluminium intoxicated and diabetic retinopathy in rats during perinatal life, J Photochem Photobiol B, 196, 2019, 111502.
  • C.Y. Rahimzadeh, A.A. Barzinjy, A.S. Mohammed, S.M. Hamad, Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles, PLoS One, 17(8), 2022, e0268184.
  • H.B.H. Rahuman, R. Dhandapani, V. Palanivel, S. Thangavelu, R. Paramasivam, S. Muthupandian, Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens, PloS one, 16(9), 2021, e0256748.
  • T. Kumkoon, M. Srisaisap, P. Boonserm, Biosynthesized silver nanoparticles using Morus alba (white mulberry) leaf extract as potential antibacterial and anticancer agents, Molecules, 28(3), 2023, 1213.
  • A. Alahmad, A. Feldhoff, N.C. Bigall, P. Rusch, T.Scheper, J.G. Walter, Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities, Nanomaterials, 11(2), 2021, 487.
  • É. da Silva Almeida, J.D.G. da Rocha, D. de Oliveira, D. Hotza, Valorization of noni-leaf tea as a by-product of nanofiltration for the green synthesis of copper oxide nanoparticles with improved antimicrobial properties, Mater Sci Eng B, 317, 2025, 118172.
  • T. Hahn, U, Shmueli, J.W. Arthur (Eds.), International tables for crystallography (Vol. 1, p. 182), 1983, Dordrecht: Reidel.
  • E.T. Assefa, G. Shumi, K.M. Gendo, G. Kenasa, N. Roba, Review on green synthesis, characterization and antibacterial activity of CuO nanoparticles using biomolecules of plant extract, Results Chem, 8, 2024, 101606.
  • R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation, Spectrochim Acta A Mol Biomol Spectrosc, 121, 2014, 746–750.
  • C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M.D. Balakumaran, P.T. Kalaichelvan, Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells, Biotechnol Rep, 4, 2014, 42–49.
  • R. Lotha, B.R. Shamprasad, N.S. Sundaramoorthy, S. Nagarajan, A. Sivasubramanian, Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@ CuNPs) inhibits MRSA biofilms, Microb Pathog, 132, 2019, 178–187.
  • A. Maniraj, M. Kannan, K. Rajarathinam, S. Vivekanandhan, S. Muthuramkumar, Green synthesis of silver nanoparticles and their effective utilization in fabricating functional surface for antibacterial activity against multi-drug resistant Proteus mirabilis, J Cluster Sci, 30, 2019, 1403–1414.
  • S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res Pharm Sci, 9(6), 2014, 385–406.
  • N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids Surf B Biointerfaces, 81(1), 2019, 81–86.
  • A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnology Advances, 31(2), 2013, 346–356.
  • S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J Colloid Interface Sci, 275(2), 2004, 496-502.
  • S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J Adv Res, 7(1), 2016, 17-28.
  • L.K. Kabeya, N.K. Ngombe, P.K. Mutwale, J.B. Safari, G.G. Matlou, R.W. Krause, C.I. Nkanga, Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste, Artif Cells Nanomed Biotechnol, 53(1), 2025, 29-42.
  • C. Pechyen, B. Tangnorawich, S. Toommee, R. Marks, Y. Parcharoen, Green synthesis of metal nanoparticles, characterization and biosensing applications, Sensors International, 2024, 100287.
  • Z. Bedlovičová, I. Strapáč, M. Baláž, A. Salayová, A brief overview on antioxidant activity determination of silver nanoparticles, Molecules, 25(14), 2020, 3191.
  • S.K. Chandraker, M.K. Ghosh, M. Lal, R. Shukla, A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications, Nano Express, 2(2), 2021, 022008.
  • S.V. Gudkov, D.E. Burmistrov, P.A. Fomina, S.Z. Validov, V.A. Kozlov, Antibacterial properties of CuO nanoparticles: A review, Int J Mol Sci, 25(21), 2024, 11563.
  • I.G. Munteanu, C. Apetrei, Analytical methods used in determining antioxidant activity: A review, Int J Mol Sci, 22(7), 2021, 3380.
  • A.M.E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review, Green Process Synth, 9(1), 2020, 304-339.
  • M.I. Kazeem, J.O. Adamson, I.A. Ogunwande, Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf, Biotechnol Res Int, 2013, Article ID 912012.
  • R. Perumalsamy, L. Krishnadhas, Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of Myristica fragrans seeds, Appl Biochem Biotechnol, 194(3), 2022, 1136-1148.
  • D.A. Jamdade, D. Rajpali, K.A. Joshi, R. Kitture, A.S. Kulkarni, V.S. Shinde, J. Bellare, K.R. Babiya, S. Ghosh, Gnidia glauca‐and Plumbago zeylanica‐Mediated Synthesis of Novel Copper Nanoparticles as Promising Antidiabetic Agents, Adv Pharmacol Sci, 2019(1) 2019, 9080279.
  • C. Proença, M. Freitas, D. Ribeiro, E.F.T. Oliveira, J.L.C. Sousa, S.M. Tomé, M.J. Ramos , A.M.S. Silva, P.A. Fernandes, E. Fernandes, α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study, J Enzyme Inhib Med, 32(1), 2017, 1216-1228.
  • D. Das, J.K. Patra, N. Basavegowda, C.N.Vishnuprasad, H.S. Shin, Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam, Int J Nanomed, 2019, 4741-4754.
  • L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomed, 2017, 1227-1249.
  • K. Khorsandi, S. Keyvani-Ghamsari, F. Khatibi Shahidi, R. Hosseinzadeh, S. Kanwal, A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target, 29(9), 2021, 941-959.
  • N. Basavegowda, K.H. Baek, Multimetallic nanoparticles as alternative antimicrobial agents: challenges and perspectives, Molecules, 26(4), 2021, 912.
  • M. Lopez-Carrizales, K.I. Velasco, C. Castillo, A. Flores, M. Magaña, G.A. Martinez-Castanon, F. Martinez-Gutierrez, In vitro synergism of silver nanoparticles with antibiotics as an alternative treatment in multiresistant uropathogens, Antibiotics, 7(2), 2018, 50.
  • R. Vazquez-Muñoz, A. Meza-Villezcas, P.G.J. Fournier, E. Soria-Castro, K. Juarez-Moreno, A.L. Gallego-Hernández, N. Bogdanchikova, R. Vazquez-Duhalt A. Huerta-Saquero, Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane, PloS one, 14(11), 2019, e0224904.
  • A.S. Dove, D.I. Dzurny, W.R. Dees, N. Qin, C.C. Nunez Rodriguez, L.A. Alt, G: L. Ellward, J.A. Best, N.G. Rudawski, K. Fujii, D.M. Czyż, Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria, Frontiers in Microbiology, 13, 2023, 1064095.
  • A.L. Ulloa-Ogaz, H.A. Piñón-Castillo, L.N. Muñoz-Castellanos, M.S. Athie-García, M.D.L. Ballinas-Casarrubias, J.G. Murillo-Ramirez, L.A. Flores-Ongay, R. Duran, E. Orrantia-Borunda, Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs, Environ Sci Pollut Res, 24, 2017, 22048-22060.
  • L.K. Ruddaraju, S.V.N. Pammi, G. sankar Guntuku, V.S. Padavala, V.R.M. Kolapalli, A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations, Asian J Pharm Sci, 15(1), 2020, 42-59.
  • J.H. Quan, F.F. Gao, J.Q. Chu, G.H. Cha, J.M. Yuk, W. Wu, Y.H. Lee, Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells, Nanomedicine, 16(16), 2021, 1357-1375.
  • B. Zhu, Y. Li, Z. Lin, M. Zhao, T. Xu, C. Wang, N. Deng, Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways, Nanoscale Res Lett, 11, 2016, 1-8.
  • S. Gurunathan, M. Qasim, C. Park, H. Yoo, J.H. Kim, K. Hong, Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116, Int J Mol Sci, 19(8), 2018, 2269.
There are 75 citations in total.

Details

Primary Language English
Subjects Biologically Active Molecules
Journal Section Research Articles
Authors

Osman Akmeşe 0000-0001-9300-8324

Cemalettin Baltacı 0000-0002-4336-4002

Enes Gültekin 0000-0002-8545-1868

Irmak Icen Taskın 0000-0002-1612-0563

Meryem Rüveyda Sever 0000-0001-9271-1528

Dilek Çam Derin 0000-0001-5617-4067

Ömer Karpuz 0000-0002-0546-9831

Project Number 22.F5115.01.05
Publication Date September 30, 2025
Submission Date July 9, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

APA Akmeşe, O., Baltacı, C., Gültekin, E., … Icen Taskın, I. (2025). Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency. Turkish Journal of Analytical Chemistry, 7(3), 321-337. https://doi.org/10.51435/turkjac.1738363
AMA Akmeşe O, Baltacı C, Gültekin E, et al. Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency. TurkJAC. September 2025;7(3):321-337. doi:10.51435/turkjac.1738363
Chicago Akmeşe, Osman, Cemalettin Baltacı, Enes Gültekin, Irmak Icen Taskın, Meryem Rüveyda Sever, Dilek Çam Derin, and Ömer Karpuz. “Phytogenic Silver and Copper Nanoparticles from Morus Nigra L. Leaf As Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency”. Turkish Journal of Analytical Chemistry 7, no. 3 (September 2025): 321-37. https://doi.org/10.51435/turkjac.1738363.
EndNote Akmeşe O, Baltacı C, Gültekin E, Icen Taskın I, Sever MR, Çam Derin D, Karpuz Ö (September 1, 2025) Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency. Turkish Journal of Analytical Chemistry 7 3 321–337.
IEEE O. Akmeşe, C. Baltacı, E. Gültekin, I. Icen Taskın, M. R. Sever, D. Çam Derin, and Ö. Karpuz, “Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency”, TurkJAC, vol. 7, no. 3, pp. 321–337, 2025, doi: 10.51435/turkjac.1738363.
ISNAD Akmeşe, Osman et al. “Phytogenic Silver and Copper Nanoparticles from Morus Nigra L. Leaf As Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency”. Turkish Journal of Analytical Chemistry 7/3 (September2025), 321-337. https://doi.org/10.51435/turkjac.1738363.
JAMA Akmeşe O, Baltacı C, Gültekin E, Icen Taskın I, Sever MR, Çam Derin D, Karpuz Ö. Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency. TurkJAC. 2025;7:321–337.
MLA Akmeşe, Osman et al. “Phytogenic Silver and Copper Nanoparticles from Morus Nigra L. Leaf As Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency”. Turkish Journal of Analytical Chemistry, vol. 7, no. 3, 2025, pp. 321-37, doi:10.51435/turkjac.1738363.
Vancouver Akmeşe O, Baltacı C, Gültekin E, Icen Taskın I, Sever MR, Çam Derin D, et al. Phytogenic Silver and Copper Nanoparticles from Morus nigra L. Leaf as Multifunctional Agents: Antioxidant, Antidiabetic, Antimicrobial, and Anticancer Potency. TurkJAC. 2025;7(3):321-37.